The Nature and Role of Theory in Metabolic Control

  • Athel Cornish-Bowden
Chapter
Part of the NATO ASI Series book series (NSSA, volume 190)

Abstract

Current discussion of metabolic control is dominated by the theory developed from the landmark papers of Kacser & Burns (1973), and Heim-ich & Rapoport (1974), which built on earlier work of Higgins (1963, 1965). Although the main ideas in this theory have become much more widely accepted by biochemists as a whole in the past few years, acceptance is far from universal, and criticisms have come from various directions. Some of these are set out and discussed in other chapters of this book, but in order to form a judgement, whether about the usefulness of metabolic control theory for analysing real metabolic systems or about its status as a special case of biochemical systems theory (Savageau, 1969ab, 1970, 1976), as it is categorized by Savageau et al. (1987 ab, 1989), one needs to have a general view of what a scientific theory is and what role it has to play in science, particularly in experimental science. In this introductory chapter, therefore, I plan to discuss these questions, with the hope of providing a context in which the claims of metabolic control theory as a legitimate theory can be discussed. Elsewhere (Cornish-Bowden, 1989) I have discussed the criticisms of metabolic control theory made by Savageau and his colleagues (Savageau et al.,1987ab) in a specific way, and will not repeat the arguments in detail here; rather I shall use metabolic control as a context for discussing in general what a theory

Keywords

Metabolic Control Hill Equation Introductory Chapter Legitimate Theory Tetrameric Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, G. S. (1925a)J. Biol. Chem. 63, 529–545Google Scholar
  2. Adair, G. S. (1925b) Proc. Roy. Soc., Ser. A 109, 292–300CrossRefGoogle Scholar
  3. Cornish-Bowden, A. (1989) J. Theor. Biol. 136, 365–377PubMedCrossRefGoogle Scholar
  4. Crabtree, B. and Newsholme, E. A. (1987) Biochem. J. 247, 113–120PubMedGoogle Scholar
  5. Crick, F. (1989) What Mad Pursuit: a Personal View of Scientific Discovery, pp. 108–115, Weidenfeld and Nicolson, LondonGoogle Scholar
  6. Dobzhansky, Th. (1973) Amer. Sci. Teacher 35, 125–129CrossRefGoogle Scholar
  7. Dobzhansky, Th., Ayala, F. J., Stebbins, G. L. and Valentine, J. W. (1977) Evolution, pp. 474–516, Freeman, San FranciscoGoogle Scholar
  8. Easterby, J. S. (1981) Biochem.J. 199, 155–161PubMedGoogle Scholar
  9. Feynman, R. P. (1985) Surely you’re joking, Mr. Feynman!, pp. 84–87, Unwin Paperbacks, London Garfinkel, D. and Hess, B. (1964) J. Biol. Chem. 239, 971–983Google Scholar
  10. Gross, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 8371–8375Google Scholar
  11. Heinrich, R. and Rapoport, T. A. (1974) Eur. J. Biochem. 42, 89–102PubMedCrossRefGoogle Scholar
  12. Higgins, J. (1963) Ann. N.Y. Acad. Sci. 108, 305–321Google Scholar
  13. Higgins, J. (1965) in Control of Energy Metabolism (Chance, B., Estabrook, R. K. and Williamson, J. R., eds.), pp. 13–46, Academic Press, New YorkGoogle Scholar
  14. Hill, A. V. (1910) J. Physiol. (Lond.) 40, iv-viiGoogle Scholar
  15. Kacser, H. and Bums, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65–104Google Scholar
  16. Koshland, D. E., Jr., Némethy G.and Filmer, D (1966) Biochemistry 5, 365–385PubMedCrossRefGoogle Scholar
  17. Liao, J. C. and Lightfoot, E. N., Jr (1987) J. Theor. Biol. 126, 253–273Google Scholar
  18. Monod, J., Wyman, J. and Changeux, J.-P. (1965) J. Molec. Biol. 12, 88–118PubMedCrossRefGoogle Scholar
  19. Niemeyer, H., Cârdenas, M. L., Rabajille, E., Ureta, T., Clark-Turri, L. and Penaranda, J. (1975) Enzyme 20, 321–333PubMedGoogle Scholar
  20. Parry, M. J. and Walker, D. G. (1967) Biochem. J. 105, 473–482PubMedGoogle Scholar
  21. Penny, D., Foulds, L. R. and Hendy, M. D. (1982) Nature 297, 197–200PubMedCrossRefGoogle Scholar
  22. Popper, K. R. (1959) The Logic of Scientific Discovery. Hutchinson, London (translated from Logik der Forschung, Vienna, 1934 )Google Scholar
  23. Ricard, J. and Comish-Bowden, A. (1987) Eur. J. Biochem. 166, 255–272PubMedCrossRefGoogle Scholar
  24. Rich, V. (1977) Nature 270, 470–471Google Scholar
  25. Savageau, M. A. (1969a)J. Theor. Biol. 25, 365–369Google Scholar
  26. Savageau, M. A. (1969b)J. Theor. Biol. 25, 370–379Google Scholar
  27. Savageau, M. A. (1970) J. Theor. Biol. 26, 215–226PubMedCrossRefGoogle Scholar
  28. Savageau, M. A. (1976) Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology, Addison-Wesley, Reading, MassachusettsGoogle Scholar
  29. Savageau, M. A., Voit, E. O. and Irvine, D. H. (1987 a) Math. Biosci. 87,127–145Google Scholar
  30. Savageau, M. A., Voit, E. O. and Irvine, D. H. (1987 b) Math. Biosci. 87,147–169Google Scholar
  31. Slater, E. C. (1988) in The Roots of Modern Biochemistry (Kleinkauf, H., von Döhren, H. and Jaenicke, L., eds.) pp. 625–630, de Gruyter, BerlinGoogle Scholar
  32. Storer, A. C. and Cornish-Bowden, A. (1974) Biochem. J. 141, 205–209PubMedGoogle Scholar
  33. Storer, A. C. and Comish-Bowden, A. (1976) Biochem. J. 159, 7–14PubMedGoogle Scholar
  34. van Schaftingen, E. and Hers, H.-G. (1980) Biochem. Biophys. Res. Commun. 96, 1524–1531 Yang, C. N. (1977) Ann. N.Y. Acad. Sci. 294, 86Google Scholar
  35. Yang, C. N. (1977) Ann. N.Y. Acad. Sci. 294, 86Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Athel Cornish-Bowden
    • 1
  1. 1.Centre de Biochimie et de Biologie MoléculaireCentre National de la Recherche ScientifiquMarseilleFrance

Personalised recommendations