Highlights of the NJL Chiral Soliton

  • Herbert Weigel

Abstract

The baryon number one soliton of the NJL model is investigated. The Euclidian effective action is regularized using Schwinger’s proper time method. Numerical results for the static soliton energy are presented for the cases without and with vector and axialvector fields. It is found that the baryon number is carried by the polarized Dirac sea of the quarks if the a l meson is included in contrast to the case without a l where the baryon number resides on valence quarks. Thus the model strongly supports the picture of the baryon as a topological soliton of the meson fields. Including the ω vector meson leads to a non-vanishing imaginary part of the Euclidian effective action even for static solitons. Finally, the self-consistent two-flavor chiral soliton is embedded in the SU(3) flavor group and collectively quantized. The predicted mass splittings for the low-lying baryons with different hypercharge are in excellent agreement with the experimental data if the physical value for the kaon decay constant is substituted.

Keywords

Vector Meson Baryon Number Valence Quark Skyrme Model Static Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. ‘t Hooft, Nucl. Phys. B72 (1974) 461;MathSciNetADSCrossRefGoogle Scholar
  2. E. Witten, Nucl. Phys. B160 (1979) 57.MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345; 124 (1961) 246.Google Scholar
  4. 3.
    D. Ebert and H. Reinhardt,Nucl. Phys. B271 (1986) 188. Google Scholar
  5. 4.
    M. Schaden, H. Reinhardt, P. A. Amundsen and M. J. Lavelle, Nucl. Phys. B339 (1990) 595; R. Alkofer and H. R.inhardt, Z. Phys. A343 (1992) 79.Google Scholar
  6. 5.
    H. Reinhardt and R. Alkofer, Phys. Lett. 207B (1988) 482; R. Alkofer and H. Reinhardt, Z. Phys. C45 (1989) 245. Google Scholar
  7. 6.
    V. Bernard, R. L. Jaffe and Ulf-G. Meißner, Nucl. Phys. B308 (1988) 753. V. Bernard, Ulf-G. Meißner, A. H. Blin and B. Hiller, Phys. Lett. B253 (1991) 443.Google Scholar
  8. 7.
    S. Klimt, M. Lutz, U. Vogl and W. Weise, Nucl. Phys. A516 (1990) 429.CrossRefGoogle Scholar
  9. 8.
    I. Aitchinson, C. Frazer, E. Tador and J. Zuk,Phys. Lett. B165 (1985) 163. Google Scholar
  10. 9.
    H. Reinhardt and D. Ebert, Phys. Lett. B215 (1986) 459.Google Scholar
  11. 10.
    H. Reinhardt and R. Wünsch, Phys. Lett. B215 (1988) 577.Google Scholar
  12. 11.
    T. Meissner, F. Grammer and K. Goeke, Phys. Lett. B227 (1989) 296.Google Scholar
  13. 12.
    R. Alkofer, Phys. Lett. B236 (1990) 310.Google Scholar
  14. 13.
    R. Alkofer and H. Reinhardt, Phys. Lett. B244 (1991) 461.Google Scholar
  15. 14.
    R. Alkofer, H. Reinhardt, H. Weigel and U. Zückert, Phys. Rev. Lett. 69 (1992) 1874.ADSCrossRefGoogle Scholar
  16. 15.
    C. Schüren, E. Ruiz-Arriola and K. Goeke, Phys. Lett. B287 (1992) 283.Google Scholar
  17. 16.
    R. Alkofer, H. Reinhardt, H. Weigel and U. Zuckert, “The isoscalar vector meson w in the Nambu-Jona-Lasinio soliton”, Tübingen preprint August 1992; Phys. Lett. B, in press.Google Scholar
  18. 17.
    H. Reinhardt, Nucl. Phys. A503 (1989) 825.MathSciNetCrossRefGoogle Scholar
  19. 18.
    K. Goeke et al., Phys. Lett. B256 (1991) 321.Google Scholar
  20. 19.
    M. Wakamatsu and H. Yoshiki, Nucl. Phys. A524 (1991) 561.CrossRefGoogle Scholar
  21. 20.
    H. Yabu and K. Ando, Nucl. Phys. B301 (1988) 601.ADSCrossRefGoogle Scholar
  22. 21.
    H. Weigel, R. Alkofer and H. Reinhardt, Phys. Lett. B284 (1992) 296.Google Scholar
  23. 22.
    A. Blotz et al., Phys. Lett. B287 (1992) 29.Google Scholar
  24. 23.
    H. Weigel, R. Alkofer and H. Reinhardt, “Strange Baryons as Chiral Solitons of the Nambu-Jona-Lasinio model”, Nucl. Phys. B, in press.Google Scholar
  25. 24.
    J. Schwinger, Phys. Rev. 82 (1951) 664.MathSciNetADSMATHCrossRefGoogle Scholar
  26. 25.
    Ulf.-G. Meißner, N. Kaiser and W. Weise, Nucl. Phys. A466 (1987) 685.CrossRefGoogle Scholar
  27. 26.
    G. Eckart, A. Hayashi and G. Holzwarth, Nucl. Phys. A448 (1986) 732;CrossRefGoogle Scholar
  28. B. Schwesinger, H. Weigel, G. Holzwarth and A. Hayashi, Phys. Rep. 173 (1989) 173.ADSCrossRefGoogle Scholar
  29. 27.
    J. Schechter and H. Weigel, Phys. Lett. B261 (1991) 235; Phys. Rev. D44 (1991) 2916.Google Scholar
  30. 28.
    B. Schwesinger, H. Weigel, Phys. Lett. B267 (1991) 438; Nucl. Phys. A540 (1992) 461.CrossRefGoogle Scholar
  31. 29.
    N. W. Park and H. Weigel, Phys. Lett. B268 (1991) 155; Nucl. Phys. A541 (1992) 453.CrossRefGoogle Scholar
  32. 30.
    H. Weigel, J. Schechter N. W. Park and Ulf-G. Meißner, Phys. Rev. D43 (1991) 869.Google Scholar
  33. 31.
    G. Pari, B. Schwesinger and H. Walliser, Phys. Lett. B255 (1991) 1.Google Scholar
  34. 32.
    I. Zahed, A. Wirzba and Ulf-G. Meißner, Phys. Rev. D33 (1986) 830; A. Dobado and J. Terron, Phys. Lett. B247 (1990) 581.Google Scholar
  35. 33.
    B. Moussallam and D. Kalafatis, Phys. Lett. B272 (1991) 196.Google Scholar
  36. 34.
    G. Holzwarth, “Quantum corrections to Nucleon and Delta mass in the Skyrme model”, Siegen University preprint 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Herbert Weigel
    • 1
  1. 1.Institute for Theoretical PhysicsTübingen UniversityTübingenGermany

Personalised recommendations