Non-Perturbative Propagators in QCD

  • Martin Lavelle

Abstract

Over the last two decades it has become clear that perturbation theory can only give us very limited information about QCD. For example it is not sufficient to describe that most basic of things, the mass spectrum. Although, we may hope one day to gain from the lattice approach numerical confirmation that we have the correct Lagrangian to describe hadronic physics, that day is not at hand. In the meantime it will be argued here, the operator product expansion (OPE) offers us some useful non-perturbative information about the structure of QCD.

Keywords

Operator Product Expansion Gluon Propagator Pole Mass Quark Propagator Gluonic Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ad89]
    S.L. Adler, Nucl. Phys. B (Proc. Supp.) 9 (1989) 437.ADSCrossRefGoogle Scholar
  2. [Ah92]
    J. Ahlbach, Diploma Thesis, München (1992).Google Scholar
  3. [AEM91]
    M.R. Ahmady, V. Elias and R.R, Mendel, Phys. Rev. D44 (1991) 263. [Ba85] G.G. Batrouni et al, Phys. Rev. D32 (1985) 2736.Google Scholar
  4. [CT87]
    H. Cheng and E.C. Tsai, Phys. Rev. D36 (1987) 3196.ADSGoogle Scholar
  5. ESS88] V. Elias, T.G. Steele and M.D. Scadron, Phys. Rev. D38 (1988) 1584, and references therein.Google Scholar
  6. [Ha90]
    For references, see e.g. T. Hatsuda, Seattle preprint 1991, INT91–00–08. [Hae90] U. Häbel et al, Z. Phys. A336 (1990) 423, 435Google Scholar
  7. [JM92]
    M. Jamin and M. Münz, Munich preprint 1992, TUM-T31–21/92, and references thereinGoogle Scholar
  8. [KW86]
    W. Kummer and J. Weiser, Z. Phys. C31 (1986) 105.MathSciNetGoogle Scholar
  9. [La85]
    T.I. Larsson, Phys. Rev. D30 (1985) 956.MathSciNetGoogle Scholar
  10. [La87]
    P.V. Landshoff, Phys. Rev. D35 (1987) 766.ADSGoogle Scholar
  11. [LM92a]
    M. Lavelle and D. McMullan, Mod. Phys. Lett. A7 (1992) 219.Google Scholar
  12. LM92b] M. Lavelle and D. McMullan, Mainz/Dublin Preprint, MZ/TH 92–29, DIAS-STP-92–13.Google Scholar
  13. [LO91]
    M.J. Lavelle and M. Oleszczuk, Z. Phys. C51 (1991) 615.Google Scholar
  14. [LO92a]
    M.J. Lavelle and M. Oleszczuk, Phys. Lett. B275 (1992) 133. [LO92b] M. Lavelle and M. Oleszczuk, Mainz preprint 1992, MZ-TH/92–33. [LS88] M.J. Lavelle and M. Schaden, Phys. Lett. B208 (1988) 297.Google Scholar
  15. [LS90]
    M.J. Lavelle and M. Schaden, in “Physical and Nonstandard Gauges”,Ed. P.,Gaigg et al, Springer-Verlag, Berlin Heidelberg 1990.Google Scholar
  16. [LWG87]
    M.J. Lavelle, E. Werner and S. Glazek, Few-Body Systems, Suppl. 2, 519, Springer-Verlag 1987.Google Scholar
  17. [Mo92]
    G. Modanese, J. Math. Phys. 33 (1992) 1523.Google Scholar
  18. [MR86]
    S.V. Mikhailov and A.V. Radyushkin, JETP Lett. 43 (1986) 712.ADSGoogle Scholar
  19. [Na90]
    For a review see, e.g., S. Narison, “QCD Spectral Sum Rules”, World Scientific, Singapore 1990.Google Scholar
  20. [P076]
    H.D. Politzer, Nucl. Phys. B117 (1976) 397.ADSCrossRefGoogle Scholar
  21. [PR82]
    P. Pascual and E. de Rafael, Z. Phys. C12 (1982) 12.Google Scholar
  22. [PT84]
    P. Pascual and R. Tarrach, “QCD: Renormalisation for the Practicioner”, Springer Verlag, Berlin 1984.CrossRefGoogle Scholar
  23. [RS86]
    L.J. Reinders and K. Stam, Phys. Lett. B180 (1986) 125.Google Scholar
  24. Sch90] M. Schaden et al, Nucl. Phys. B339 (1990) 595; P.A. Amundsen and M. Schaden, Stavanger preprint 1992, 159; see also the contribution of H. Reinhardt to these proceedings.Google Scholar
  25. [St92]
    A. Streibl, Diploma thesis, München (1992).Google Scholar
  26. SVZ76] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1976) 397; see also the contribution of W.-Y. Hwang to these proceedings.Google Scholar
  27. [Ta81]
    R. Tarrach, Nucl. Phys. B183 (1981) 384.ADSCrossRefGoogle Scholar
  28. [Yn83]
    F.J. Yndurâin, “Quantum Chromodynamics”, Springer-Verlag, New York 1983.Google Scholar
  29. [Yn89]
    F.J. Yndurâin, Z. Phys. C42 (1989) 653.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Martin Lavelle
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzF.R. Germany

Personalised recommendations