Classical Limit of Quantum Mechanics

  • Dipankar Home

Abstract

The classical limit problem of quantum mechanics is a particular example of a broader issue concerning the relationship between two physical theories, one empirically valid in a subdomain of the other. It is a basic requirement that a theory superseding the previous one must be compatible with the former at a suitable limit. As a prelude to discussing the classical limit of quantum mechanics, we recall some relevant aspects of this general issue.

Keywords

Wave Function Quantum Mechanic Wave Packet Classical Limit Classical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and O. Wolf, Principles of Optics (Pergamon Press, Oxford, UK, 1980), chap. 3.Google Scholar
  2. 2.
    H. Bacry and J. M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972), pp. 77–78.Google Scholar
  4. 4.
    C. Möller, Theory of Relativity (Oxford Univer. Press, Oxford, UK, 1988), pp. 431–33.Google Scholar
  5. 5.
    P. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, 1993), p. 222.CrossRefGoogle Scholar
  6. 6.
    M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Berry, Physica Scripta 40, 335 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. L. Liboff, Phys. Today 37, 50 (1984).CrossRefGoogle Scholar
  9. 9.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1643.MATHGoogle Scholar
  10. 10.
    G. G. Cabrera and M. Kiwi, Phys. Rev. A 36, 2995 (1987).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    D. Home and S. Sengupta, Nuov. Cim. 82B, 214 (1984).MathSciNetADSGoogle Scholar
  12. 12.
    M. Andrews, Am. J. Phys. 44, 1064 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    M. W. Cole and M. H. Cohen, Phys. Rev. Lett. 23, 1238 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    A. Messiah, Quantum Mechanics, vol. 1 (North-Holland, Amsterdam, 1961), p. 395.Google Scholar
  15. 15.
    A. N. Basu and S. Sengupta, Nuov. Cim. 106B, 511 (1991).ADSGoogle Scholar
  16. 16.
    D. Bohm, Quantum Theory (Prentice Hall, Englewood Cliffs, NJ, 1951), Chap. 21.Google Scholar
  17. 17.
    A. Messiah, Quantum Mechanics, vol. 1 (North-Holland, Amsterdam, 1961), chap. 6.Google Scholar
  18. 18.
    M. Andrews, J. Phys. A. 14, 1123 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    A. Peres, Quantum Theory—Concepts and Methods (Kluwer, Dordrecht, Netherlands, 1993), chap. 10.MATHGoogle Scholar
  20. 20.
    P. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, 1993), p. 256.CrossRefGoogle Scholar
  21. 21.
    L. E. Ballentine, Y. Gang, and J. P. Zibin, Phys. Rev. A 50, 2854 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    H. D. Zeh, Found Phys. 1, 69 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    W. H. Zurek, Phys. Today 44 (10), 36 (1991).CrossRefGoogle Scholar
  24. 24.
    Y. A. Kagan and A. J. Leggett, Quantum Tunnelling in Condensed Media (Else vier, Amsterdam, 1992), chap. 1.Google Scholar
  25. 25.
    A. J. Leggett, in Proc. 4th Int. Symp. on Foundations of Quantum Mechanics in the Light of New Technology (Japanese Journal of Applied Physics Publication, Tokyo, 1993), pp. 10–17.Google Scholar
  26. 26.
    E. Joos and H. D. Zeh, Z. Phys. B 59, 223 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    R. Omnes, Interpretation of Quantum Mechanics (Princeton Univer. Press, Princeton, NJ, 1994), chap. 7.MATHGoogle Scholar
  28. 28.
    H. Dekker, Phys. Rev. A 31, 1067 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    W. H. Zurek, in Frontiers of Nonequilibrium Statistical Physics (P. Mystre and M. O. Scully, eds.) (Plenum, New York, 1986) p. 145.CrossRefGoogle Scholar
  30. 30.
    W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071 (1989).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science 209, 547 (1980).ADSCrossRefGoogle Scholar
  32. 32.
    W. H. Zurek, in Conceptual Problems of Quantum Gravity (A. Ashtekar and J. Stachel, eds.) (Birkhäuser, Boston, 1991), pp. 64–65.Google Scholar
  33. 33.
    R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (NY) 24, 118 (1963).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A. O. Caldeira and A. J. Leggett, Ann. Phys. (NY) 149, 374 (1983).ADSCrossRefGoogle Scholar
  35. A. O. Caldeira and A. J. Leggett, Ann. Phys. (NY) 153, 445 (1984).CrossRefGoogle Scholar
  36. 35.
    G. S. Agarwal, Phys. Rev. A 4, 739 (1971).ADSCrossRefGoogle Scholar
  37. 36.
    A. J. Leggett, in Chance and Matter (J. Souletie et al., eds.) (North-Holland, Amsterdam, 1987), pp. 411–416.Google Scholar
  38. 37.
    G. W. Ford, J. T. Lewis, and R. F. O Connell, Phys. Rev. A 37, 4419 (1988).MathSciNetADSCrossRefGoogle Scholar
  39. 38.
    A. Venugopalan, Phys. Rev. A 50, 2742 (1994).ADSCrossRefGoogle Scholar
  40. 39.
    W. H. Zurek, Prog. Theor. Phys. 89, 281 (1993).MathSciNetADSCrossRefGoogle Scholar
  41. 40.
    P. Pearle, True Collapse and False Collapse, Hamilton College Preprint (1995).Google Scholar
  42. 41.
    P. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, 1993), chap. 6.CrossRefGoogle Scholar
  43. 42.
    D. Home and S. Sengupta, Am. J. Phys. 51, 265 (1983).ADSCrossRefGoogle Scholar
  44. 43.
    L. S. Brown, Am. J. Phys. 40, 371 (1972).ADSCrossRefGoogle Scholar
  45. 44.
    P. Holland, in Bohmian Mechanics and Quantum Theory: An Appraisal (J. T. Cushing, A. Fine, and S. Goldstein, eds.) (Kluwer, Dordrecht, Netherlands, 1996), pp. 99–110.CrossRefGoogle Scholar
  46. 45.
    P. Holland, Found. Phys. Lett. 2, 471 (1989).MathSciNetCrossRefGoogle Scholar
  47. 46.
    L. I. Schiff, Quantum Mechanics (McGraw-Hill, Tokyo, 1968), p. 76.Google Scholar
  48. 47.
    A. Einstein, in Scientific Papers Presented to Max Born (Oliver and Boyd, Edinburgh, Scotland, 1953), pp. 33–40.MATHGoogle Scholar
  49. 48.
    D. Bohm, Scientific Papers Presented to Max Born (Oliver and Boyd, Edinburgh, Scotland, 1953), pp. 13–19.MATHGoogle Scholar
  50. 49.
    D. Bohm and B. J. Hiley, Phys. Rev. Lett. 55, 2511 (1985).MathSciNetADSCrossRefGoogle Scholar
  51. 50.
    D. Bohm and B. J. Hiley, Undivided Universe (Routledge, London, 1993), chap. 8.Google Scholar
  52. 51.
    D. Bohm and B. J. Hiley, Undivided Universe (Routledge, London, 1993), pp. 115–16.Google Scholar
  53. 52.
    A. J. Leggett, in Percolation, Localization, and Superconductivity (A. M. Goldman and S. Wolf, eds.), NATO Advanced Study Institute, vol. 109 (Plenum, New York, 1984).Google Scholar
  54. 53.
    A. J. Leggett, in Directions in Condensed Matter Physics (G. Grinstein and G. Mazenko, eds.) (World Scientific, Singapore, 1986).Google Scholar
  55. 54.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).ADSCrossRefGoogle Scholar
  56. 55.
    C. D. Tesche, J. R. Kirtley, W. J. Gallagher, A. W. Kleinsasser, R. L. Sandstrom, S. I. Raider, and M. P. A. Fisher, in Proc. 3rd Int. Symp. Foundations of Quantum Mechanics (S. Kobayashi et al., eds.) (Physical Society of Japan, Tokyo, 1989), pp. 233–43.Google Scholar
  57. 56.
    C. D. Tesche, Phys. Rev. Lett. 64, 2358 (1990).ADSCrossRefGoogle Scholar
  58. 57.
    R. P. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures on Physics, vol. 3 (Addison-Wesley, Reading, MA, 1964), chap. 9-1.Google Scholar
  59. 58.
    A. I. M. Rae, J. Phys. A 23, L57 (1990).ADSCrossRefGoogle Scholar
  60. 59.
    M. R. Gallis and G. N. Fleming, Phys. Rev. A 42, 38 (1990).ADSCrossRefGoogle Scholar
  61. 60.
    A. J. Leggett, in Lesson of Quantum Theory (J. de Boer et al, eds.) (Elsevier, Amsterdam, 1986), p. 49.Google Scholar
  62. 61.
    A. J. Leggett, Prog. Theor. Phys. 69 (Suppl.), 80 (1980).MathSciNetCrossRefGoogle Scholar
  63. 62.
    A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).MathSciNetADSCrossRefGoogle Scholar
  64. 63.
    A. J. Leggett, in Proc. 2d Int. Symp. on Foundations of Quantum Mechanics (M. Namiki et al., eds.) (Physical Society of Japan, Tokyo, 1987), p. 297.Google Scholar
  65. 64.
    D. W. Bol and R. de Bruyn Oubober, Physica 154B, 56 (1988).ADSGoogle Scholar
  66. 65.
    R. K. Clifton, in Proceedings of the Symposium on the Foundations of Modern Physics 1990 (P. Lahti and P. Mittelstaedt, eds.) (World Scientific, Singapore, 1991).Google Scholar
  67. 66.
    M. Redhead, Incompleteness, Nonlocality, and Realism (Oxford Univer. Press, Oxford, UK, 1987), chap. 4.MATHGoogle Scholar
  68. 67.
    S. Chakravarty and A. J. Leggett, Phys. Rev. Lett. 52, 5 (1984).ADSCrossRefGoogle Scholar
  69. 68.
    A. J. Leggett, Found. Phys. 18, 939 (1988).ADSCrossRefGoogle Scholar
  70. 69.
    L. Ballentine, Phys. Rev. Lett. 59, 1493 (1987).ADSCrossRefGoogle Scholar
  71. 70.
    A. Peres, Phys. Rev. Lett. 61, 2019 (1987).ADSCrossRefGoogle Scholar
  72. 71.
    A. J. Leggett and A. Garg, Phys. Rev. Lett. 59, 1621 (1987).ADSCrossRefGoogle Scholar
  73. 72.
    S. Foster and A. Elby, Found. Phys. 21, 773 (1991).ADSCrossRefGoogle Scholar
  74. 73.
    D. Home, in Bell’s Theorem and the Foundations of Modern Physics (A. Van der Merwe et al., eds.) (World Scientific, Singapore, 1992).Google Scholar
  75. 74.
    L. Hardy, D. Home, E. J. Squires, and M. A. B. Whitaker, Phys. Rev. A 45, 4267 (1992).MathSciNetADSCrossRefGoogle Scholar
  76. 75.
    D. T. Gillespie, Phys. Lett. A 49, 1607 (1994).MathSciNetGoogle Scholar
  77. 76.
    F. Benatti, G. C. Ghirardi, and R. Grassi, Found. Phys. Lett. 7, 105 (1994).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Dipankar Home
    • 1
  1. 1.Bose InstituteCalcuttaIndia

Personalised recommendations