Analysis of Dissociative Recombination of Electrons with ArXe+ using ArXe* Calculations

  • A. P. Hickman
  • D. L. Huestis
  • R. P. Saxon

Abstract

Electron scattering from a molecular ion is closely connected with the behavior of the highly excited electronic states of the corresponding neutral molecule. Both systems are governed by the same Hamiltonian. This chapter reviews recent calculations that illustrate the methodology that can be applied in such situations. The examples described are drawn from our work over the past few years developing theoretical techniques to treat inelastic collision processes important in laser systems. For example, in the atomic xenon laser, the following processes are important:
$$ Xe*\left( {n\ell KJ} \right) + He \to Xe*\left( {n\ell K'J'} \right) $$
(1)
$$ Xe*\left( {n\ell KJ} \right) + Ar \to Xe*\left( {n\ell K'J'} \right) $$
(2)
$$ ArXe + e \to Xe*\left( {n\ell K'J'} \right) + Ar $$
(3)
Processes (1) and (2) are fine structure changing collisions. The quantum numbers specify the atomic orbital (nl), the details of the angular momentum coupling between the valence electron and the ionic core (K), and the total angular momentum (J). We have recently calculated the excited state potential curves and matrix elements necessary for a quantum mechanical treatment of the dynamics of these collisions.1,2 Process (3), dissociative recombination (DR), involves the same atomic particles (in a different arrangement) as processes (1) and (2). Using information from our recent calculations on the low-lying excited states that govern processes (1) and (2), we have been able to obtain the necessary potential curves and matrix elements to analyze DR.

Keywords

Potential Curve Potential Curf Quantum Defect Dissociative Recombination Coupling Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Hickman, R. P. Saxon, and D. L. Huestis, J. Chem. Phys. 96, 2099 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    A. P. Hickman, R. P. Saxon, and D. L. Huestis, J. Chem. Phys. 98, 5419 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    J. N. Bardsley, J. Phys. B. 1, 349 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    J. N. Bardsley and M. A. Biondi, Adv. Atom. Mol. Phys. 6, 1 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    A. Giusti, J. Phys. B. 13, 3867 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    A.P. Hickman, J. Phys. B. 20, 2091 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    W. J. Alford and G. N. Hays, J. Appl. Phys. 65, 3760 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ohwa, T. J. Moratz, and M. J. Kushner, J. Appl. Phys. 66, 5131 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    R. M. Pitzer and N. W. Winter, J. Phys. Chem. 92, 3061 (1988).CrossRefGoogle Scholar
  10. 10.
    A.H.H. Chang and R. M. Pitzer, J. Am. Chem. Soc. 111, 2500 (1989).CrossRefGoogle Scholar
  11. 11.
    R.H.G. Reid, J. Phys. B 6, 2018 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    E. E. Nikitin, Adv. Chem. Phys. 28, 317 (1975).CrossRefGoogle Scholar
  13. 13.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1967).Google Scholar
  14. 14.
    B. R. Johnson, J. Comp. Phys. 13, 445 (1973).ADSMATHCrossRefGoogle Scholar
  15. 15.
    J. K. Ku and D. W. Setser, J. Chem. Phys. 84, 4304 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    W. J. Alford, IEEE J. Quant. Elect. 26, 1633 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. Bruce, W. B. Layne, C. A. Whitehead, and J. W. Keto, J. Chem. Phys. 92, 2917 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    J. Xu and D. W. Setser, J. Chem. Phys. 92, 4191 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    J. Xu and D. W. Setser, J. Chem. Phys. 94, 4243 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    W. J. Alford, J. Chem. Phys. 96, 4330 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    H. Horiguchi, R.S.F. Chang, and D. W. Setser, J. Chem. Phys. 75, 1207 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    G. Inoue, J. K. Ku, and D. W. Setser, J. Chem. Phys. 81, 5760 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    N. Y. Du and C. H. Greene, J. Chem. Phys. 90, 6347 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    J. Baker and C. K. Rhodes, J. Chem. Phys. 73, 2626 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. P. Hickman
    • 1
  • D. L. Huestis
    • 1
  • R. P. Saxon
    • 1
  1. 1.Molecular Physics LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations