Monte Carlo and Analytic Methods in the Transport of Electrons, Neutrons, and Alpha Particles

  • Randall S. Caswell
  • Stephen M. Seltzer
Part of the Basic Life Sciences book series (BLSC, volume 63)

Abstract

In this paper we discuss Monte Carlo calculational methods and analytic methods, and methods combining features of both, developed over the past decades at the National Institute of Standards and Technology. These include the Monte Carlo program ETRAN for electrons and photons developed by Berger and Seltzer; the neutron analytic method developed by Caswell and Coyne, and the incorporation into that program of the synthesis of Monte Carlo results for proton tracks of Wilson and Paretzke; and the modification of the analytic method for neutrons to the case of radon progeny alpha particles by Caswell and Coyne. Some comparisons with experimental results and with other calculations are given. Some applications of the calculational results to the prediction of biological effects using biophysical models are given.

Keywords

Energy Deposition Alpha Particle Secondary Particle Monte Carlo Calculation Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Berger. Spectrum of Energy Deposited by Electrons in Spherical Regions. Proceedings of the Second Symposium on Microdosimetry, pp. 541–559 (1969).Google Scholar
  2. 2.
    M.J. Berger. Energy Deposition by Low-Energy Electrons: Delta-Ray Effects in Track Structure, and Microdosimetric Event-Size Spectra. Proceedings of the Third Symposium on Microdosimetry, pp. 157177 (1971).Google Scholar
  3. 3.
    M.J. Berger. Some New Transport Calculations of the Deposition of Energy in Biological Materials by Low-Energy Electrons. Proceedings of the Fourth Symposium on Microdosimetry, pp. 695–711 (1973).Google Scholar
  4. 4.
    H.G. Paretzke and M.J. Berger. Stopping Power and Energy Degradation for Electrons in Water Vapor. Proceedings of the Sixth Symposium on Microdosimetry, pp. 749–758 (1978).Google Scholar
  5. 5.
    M.J. Berger. On the Spatial Correlation of Ionization Events in Water. Proceedings of the Seventh Symposium on Microdosimetry, pp. 521–534 (1980).Google Scholar
  6. 6.
    M.J. Berger. Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles. Methods in Computational Physics, Vol. 1, B. Alder, S. Fernbach and M. Rotenberg, eds, pp. 135–215, Academic Press, New York (1963).Google Scholar
  7. 7.
    L. Landau. On the Energy Loss of Fast Particles by Ionization. J. Phys. (USSR) 8: 201 (1944).Google Scholar
  8. 8.
    O. Blunck and S. Leisegang. Zum Energieverlust schneller Electronen in dünnen Schichten. Z. Physik 128: 500 (1950).Google Scholar
  9. 9.
    ICRU Report 37. Stopping Powers for Electrons and Positrons. International Commission on Radiation Units and Measurements, Bethesda, MD (1984).Google Scholar
  10. 10.
    S. Goudsmit and J.L. Saunderson. Multiple Scattering of Electrons. Phys. Rev. 57: 24 (1940).CrossRefGoogle Scholar
  11. 11.
    L.V. Spencer. Theory of Electron Penetration. Phys. Rev. 98: 1597 (1955).CrossRefGoogle Scholar
  12. 12.
    M.E. Riley. Relativistic Elastic Electron Scattering from Atoms at Energies Greater than 1 keV. Sandia Laboratories report SLA-74–0107 (1974).Google Scholar
  13. 13.
    M.E. Riley, C.J. MacCallum and F. Biggs. Theoretical Electron-Atom Elastic Scattering Cross Sections. Selected Elements, 1 keV to 256 keV. Atom. Data and Nucl. Data Tables 15: 443 (1975).CrossRefGoogle Scholar
  14. 14.
    M.J. Berger and R. Wang. Multiple-Scattering Angular Deflections and Energy-Loss Straggling. Monte Carlo Transport of Electrons and Photons, T.M. Jenkins, W.R. Nelson and A. Rindi, eds., pp. 21–56, Plenum Press, New York (1988).Google Scholar
  15. 15.
    M.J. Berger, S.M. Seltzer, R. Wang and A. Schechter. Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST. National Institute of Standards and Technology report NISTAR 5118 (1993).Google Scholar
  16. 16.
    S.M. Seltzer and M.J. Berger. Bremsstrahlung Spectra from Electron Interactions with Screened Atomic Nuclei and Orbital Electrons. Nucl. Instr. Meth. B12: 95 (1985).CrossRefGoogle Scholar
  17. 17.
    S.M. Seltzer and M.J. Berger. Bremsstrahlung Energy Spectra from Electrons with Kinetic Energy 1 keV - 10 GeV Incident on Screened Nuclei and Orbital Electrons of Neutral Atoms with Z = 1–100. Atom. Data and Nucl. Data Tables 35: 345 (1986).CrossRefGoogle Scholar
  18. 18.
    M. Gryzinski. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Phys. Rev. 138: A336 (1965).CrossRefGoogle Scholar
  19. 19.
    H. Kolbenstvedt. Simple Theory for K-Ionization by Relativistic Electrons. J. Appl. Phys. 38: 4785 (1967).CrossRefGoogle Scholar
  20. 20.
    J.H. Scofield. K- and L-Shell Ionization of Atoms by Relativistic Electrons. Phys. Rev. A18: 963 (1978).Google Scholar
  21. 21.
    S.M. Seltzer. Cross Sections for Bremsstrahlung Production and Electron-Impact Ionization. Monte Carlo Transport of Electrons and Photons, T.M. Jenkins, W.R. Nelson and A. Rindi, eds., pp. 81–114, Plenum Press, New York (1988).Google Scholar
  22. 22.
    S.T. Perkins, D.E. Cullen and S.M. Seltzer. Tables and Graphs of Electron-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1–100. Lawrence Livermore National Laboratory report UCRL-50400, Vol. 31 (1991).Google Scholar
  23. 23.
    S.M. Seltzer. Calculation of Photon Mass Energy-Transfer and Mass-Energy Absorption Coefficients. Rad. Res. 136: 147 (1993).Google Scholar
  24. 24.
    M.J. Berger and S.M. Seltzer. Electron and Photon Transport Programs, I. Introduction and Notes on Program DATAPAC 4. National Bureau of Standards Report 9836 (1968); Electron and Photon Transport Programs, II. Notes on Program ETRAN 15. National Bureau of Standards Report 9837 (1968).Google Scholar
  25. 25.
    M.J. Berger and S.M. Seltzer. Bremsstrahlung and Photoneutrons from Thick Tungsten and Tantalum Targets. Phys. Rev. C2: 621 (1970).Google Scholar
  26. 26.
    S.M. Seltzer. An Overview of ETRAN Monte Carlo Methods. Monte Carlo Transport of Electrons and Photons, T.M. Jenkins, W.R. Nelson and A. Rindi, eds., pp. 153–181, Plenum Press, New York (1988).Google Scholar
  27. 27.
    M.J. Berger. Differences in the Multiple Scattering of Positrons and Electrons. Appl. Radiat. Isot. 42: 905 (1991).CrossRefGoogle Scholar
  28. 28.
    S.M. Seltzer. Electron-Photon Monte Carlo Calculations: The ETRAN Code. Appl. Radiat. !sot. 42: 917 (1991).CrossRefGoogle Scholar
  29. 29.
    J.A. Halbleib and T.A. Mehlhorn. ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes. Sandia National Laboratories report SAND84–0573 (1984); also, Nucl. Sci. Engr. 92: 338 (1986).Google Scholar
  30. 30.
    J.A. Halbleib. Structure and Operation of the ITS Code System. Monte Carlo Transport of Electrons and Photons, T.M. Jenkins, W.R. Nelson and A. Rindi, eds., pp. 249–262, Plenum Press, New York (1988).Google Scholar
  31. 31.
    J.A. Halbleib, R.P. Kensek, T.A. Mehlhorn, G.D. Valdez, S.M. Seltzer and M.J. Berger. ITS Version 3.0: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes. Sandia National Laboratories report SAND91–1634 (1992).Google Scholar
  32. 32.
    J.A. Halbleib, R.P. Kensek, T.A. Mehlhorn, G.D. Valdez, S.M. Seltzer and M.J. Berger. ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes - Version 3.0. IEEE Trans. Nucl. Sci. 39: 1025 (1992).Google Scholar
  33. 33.
    M.J. Berger. Energy Loss and Range of Electrons. Nuclear and Atomic Data for Radiotherapy and Related Radiobiology, pp. 323–345, International Atomic Energy Agency, Vienna (1987).Google Scholar
  34. 34.
    M.J. Berger and S.M. Seltzer. Calculation of Energy and Charge Deposition and of the Electron Flux in a Water Medium Bombarded by 20-MeV Electrons. Ann. New York Acad. Sci. 161: 8 (1969).CrossRefGoogle Scholar
  35. 35.
    L.V. Spencer and U. Fano. Energy Spectrum Resulting from Electron Slowing Down. Phys. Rev. 93: 1172 (1954).CrossRefGoogle Scholar
  36. 36.
    S.M. Seltzer, J. H. Hubbell and M.J. Berger. Some Theoretical Aspects of Electron and Photon Dosimetry. National and International Standardization of Radiation Dosimetry, Vol.II, pp. 3–43, International Atomic Energy Agency, Vienna (1978).Google Scholar
  37. 37.
    M.J. Berger, S.M. Seltzer and K. Maeda. Energy Deposition by Auroral Electrons in the Atmosphere. J. Atmos. Terr. Phys. 32: 1015 (1970).CrossRefGoogle Scholar
  38. 38.
    M.J. Berger. Microdosimetric Event Size Distributions in Small Sites in Water Vapour Irradiated by Protons. Phys. Med. Biol. 33: 583 (1988).CrossRefGoogle Scholar
  39. 39.
    J.E. Turner, R.N. Hamm, M.L. Souleyrette, D.E. Martz, T.A. Rhea and D.W. Schmidt. Calculations for ß Dosimetry Using Monte Carlo Code OREC for Electron Transport in Water. Health Phys. 55: 741 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    S.M. Seltzer. Dose in Water from External Irradiation by Electrons: Radiation Protection Data. National Institute of Standards and Technology report NISTIR 5136 (1993).Google Scholar
  41. 41.
    O.H. Crawford, J.E. Turner, R.N. Hamm and J.C. Ashley. Effects of the Tissue-Air Interface in Calculations of ß-Particle Skin Dose at a Depth of 70 µm. Health Phys. 61: 641 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    R.S. Caswell. Deposition of Energy by Neutrons in Spherical Cavities. Radial. Res. 27: 92–107 (1966).CrossRefGoogle Scholar
  43. 43.
    R.S. Caswell and J.J. Coyne. Interaction of Neutrons and Secondary Charged Particles with Tissue: Secondary Particle Spectra. Radiat. Res. 52: 448–470 (1972).PubMedCrossRefGoogle Scholar
  44. 44.
    R.S. Caswell and J.J. Coyne. Microdosimetric Spectra and Parameters of Fast Neutrons. Proceedings Fifth Symposium on Microdosimetry, Verbania-Pallanza, Italy, Euratom Document EUR 5452 d-e-f, pp. 97–123 (1976).Google Scholar
  45. 45.
    R. Katz and S.C. Sharma (1973). Response of Cells to Fast Neutrons, Stopped Pions, and Heavy Ion Beams. Nucl. Instrum. Meth. 111: 93–116 (1973).Google Scholar
  46. 46.
    R. Katz and S.C. Sharma. Cellular Survival in a Mixed Radiation Environment. Int. J. Radiat. Biol. 26: 143–146 (1974).CrossRefGoogle Scholar
  47. 47.
    G.W. Barendsen and J.J. Broerse. Dependence of the Oxygen Effect on the Energy of Fast Neutrons. Nature 212: 722–724 (1966).CrossRefGoogle Scholar
  48. 48.
    G.W. Barendsen and J.J. Broerse. Measurements of the Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies. in Biophysical Aspects of Radiation Quality, International Atomic Energy Agency, Vienna (1968).Google Scholar
  49. 49.
    R. Railton, D. Porter, R.C. Lawson, and W.J. Hannan. The Oxygen Enhancement Ratio and Relative Biological Effectiveness for Combined Irradiations of Chinese Hamster Cells by Neutrons and Gamma Rays. Int. J. Radiat. Biol. 25: 121–127 (1974).CrossRefGoogle Scholar
  50. 50.
    International Commission on Radiation Units and Measurements (ICRU). Microdosimetry. ICRU Report 36, pp. 86–87, Bethesda, MD, USA (1983).Google Scholar
  51. 51.
    R.S. Caswell, J.J. Coyne, and L.J. Goodman. Comparison of Experimental and Theoretical Ionization Yield Spectra for Neutrons. Proceedings of the Fourth Symposium on Neutron Dosimetry, Edited by G. Burger and H. G. Ebert, Commission of the European Communities, Luxembourg, EUR 7448 en, pp.201–211 (1981).Google Scholar
  52. 52.
    A. Ito. Private Communication. University of Tokyo, Tokyo, Japan (1981).Google Scholar
  53. 53.
    J. J. Coyne, J. C. McDonald, H.-G. Menzel and H. Schuhmacher. Detailed Intercomparison of Calculated and Measured Ionization Yield Spectra for 20 MeV Neutrons and the Implications for High Energy Neutron Dosimetry. Proc. Fourth Symposium on Neutron Dosimetry, EUR 7448, pp. 213–223 (1981).Google Scholar
  54. 54.
    W.E. Wilson and H.G. Paretzke. Calculations of Distributions for Energy Imparted and Ionization by Fast Protons in Nanometer Sites. Radiat. Res. 87: 521–537 (1981).CrossRefGoogle Scholar
  55. 55.
    W.E. Wilson, N.F. Metting, and H.G. Paretzke. Microdosimetric Aspects of 0.3- to 20-MeV Proton Tracks: I. Crossers. Radial. Res. 115: 389–402 (1988).CrossRefGoogle Scholar
  56. 56.
    W.E. Wilson and H.G. Paretzke. A Stochastic Model of Ion Track Structure. Proc. 11 th Symposium on Microdosimetry, Gatlinburg, TN (1992).Google Scholar
  57. 57.
    J.J. Coyne and R.S. Caswell. Neutron Energy Deposition on the Nanometer Scale. Radiat. Prot. Dosim. 44: 49–52 (1992).Google Scholar
  58. 58.
    K. Morstin and P. Olko. Calculation of Neutron Energy Deposition in Nanometric Sites. Radiat. Prot. Dosim. 52: 89–92 (1994).Google Scholar
  59. 59.
    P. Kliauga. Nanodosimetry of Heavy Ions Using a Miniature Cylindrical Counter of Wall-Less Design. Radiat. Prot. Dosim. 52:317–321 (1994).Google Scholar
  60. 60.
    M.N. Varma and V.P. Bond. Empirical Evidence of Cell Critical Volume Dose vs. Cell Response Function for Pink Mutations in Tradescantia. Proceedings Eighth Symposium on Microdosimetry, Edited by J. Booz and H. G. Ebert, Commission of the European Communities, pp. 439–450 (1982).Google Scholar
  61. 61.
    M.N. Varma, C.S. Wuu, and M. Zaider. Hit Size Effectiveness in Relation to the Microdosimetric Site Size. Radial. Prot. Dosim., 52: 339–346 (1994).Google Scholar
  62. 62.
    R.S. Caswell and J.J. Coyne. Microdosimetry of Radon and Radon Daughters. Radiat. Prot. Dosim. 31: 395–398 (1990).Google Scholar
  63. 63.
    R.S. Caswell and J.J. Coyne. Alpha Particle Spectra and Microdosimetry of Radon Daughters. Indoor Radon and Lung Cancer: Reality or Myth?, Edited by Frederick T. Cross, pp. 279–289, Battelle Press, Richland, WA (1992).Google Scholar
  64. 64.
    R.S. Caswell, L.R. Karam, and J.J. Coyne. Systematics of Alpha-Particle Energy Spectra and Lineal Energy (y) Spectra for Radon Daughters. Radial. Prot. Dosim., 52: 377–380 (1994).Google Scholar
  65. 65.
    D.J. Crawford-Brown and W. Hofmann. An Effect-Specific Track-Length Model for Radiations of Intermediate and High LET. Radiat. Res. 126: 162–170 (1991).PubMedCrossRefGoogle Scholar
  66. 66.
    W. Hofmann, M. Nösterer, D.J. Crawford-Brown, and A. Hutticher. Spatial Distribution Patterns of Energy Deposition and Cellular Radiation Effects in Lung Tissue Following Simulated Exposure to Alpha Particles. Radial. Prot. Dosim. 31.413–420 (1990).Google Scholar
  67. 67.
    W. Hofmann, M. Nösterer, M.G. Ménache, D.J. Crawford-Brown, R.S. Caswell, and J.J. Coyne. Microdosimetry and Cellular Radiation Effects of Radon Progeny in Human Bronchial Airways. Radiat. Prot. Dosim., 52: 381–385 (1994).Google Scholar
  68. 68.
    H.C. Yeh and G.M. Schum. Models of Human Lung Airways and Their Application to Inhaled Particle Deposition. Bull. Math. Biol. 42: 461 (1980).PubMedGoogle Scholar
  69. 69.
    National Research Council. Comparative Dosimetry of Radon in Mines and Homes. National Academy Press, Washington, DC (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Randall S. Caswell
    • 1
  • Stephen M. Seltzer
    • 1
  1. 1.U.S. Department of Commerce Technology AdministrationNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations