Flat-Panel Displays

  • M. G. Clark
Part of the Defense Research Series book series (DRSS, volume 3)

Abstract

Chapter 4.1 is concerned with a display technology, the CRT, in which information is conveyed to the display screen by deflection of a beam. There has been a number of attempts, with varying degrees of success, to develop thin CRTs. Most other approaches to flat-panel electronic displays, however, are matrix displays, in which a rectangular array of picture elements (pixels) is defined by the intersection of row and column electrodes. In spite of its apparent inefficiency relative to beam addressing (a megapixel array requires 2000 electrodes), the matrix-addressing concept has proved to be a powerful and versatile one. It has been applied to create both emissive displays and subtractive displays, which function by modifying ambient light. The prime example of the latter is the liquid-crystal display. In this chapter, we shall review the development of color in both emissive and subtractive flat-panel technologies.

Keywords

Liquid Crystal Research Service Liquid Crystal Display Device Configuration Ferroelectric Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow, W.A., Tuenga, R.T., & Zinchkovski, M.J. (1986). Multi-color TFEL display and exerciser. In SID Digest, 17, 25–29. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  2. Bender, W. (1988). Mechanical color: an interlaced LCD display. In SID Digest, 19, 458–460. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  3. Beresnev, L.A., Chigrinov, V.G., Dergachev, I., Pozhidaev, E.P., Fünfshilling, J., & Schadt, M. (1988). Electro-optic effect based on the deformation of the helix of a ferroelectric smectic C* liquid crystal. In Abstracts of 12th International Liquid Crystal Conference, (p. 282 ). Freiburg, Germany: Fraunhofer Institut IAF.Google Scholar
  4. Bonnel, M., Vinouze, B., Richard, J., Morin, F., Weisse, P., Le Contellec, M., & Maurice, F. (1987). A full colour 4.2 inch diagonal LC TV using two step process for TFTs. Proceedings of Eurodisplay 87, (pp. 180–182 ). London, England: Institute of Physics.Google Scholar
  5. Bos, P.J., Johnson, P.A., & Koehler-Beran, K.R. (1983). A liquid-crystal optical-switching device (pi-cell). In SID Digest, 14, 30–31. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  6. Bowry, C., Clark, M.G., Mosley, A., & Nicholas, B.M. (1987). A thick bistable ferroelectric liquid crystal display. Proceedings of Eurodisplay 87, (pp. 33–36 ). London, England: Institute of Physics.Google Scholar
  7. Brodie, I. (1989). Flat cold-cathode CRTs. Information Display, 5, No. 1, 17–19.Google Scholar
  8. Clark, M.G. (1990). Liquid crystal devices. In R.A. Meyers (Ed.) Encyclopedia of physical science and technology 1990 yearbook, (pp. 401–416 ). San Diego, CA: Academic Press.Google Scholar
  9. Clark, M.G., Leslie, F.M., & Shanks, I.A. (1979). Liquid crystal colour displays. UK Patent 2042–2028.Google Scholar
  10. Clark, M.G., & Shanks, I.A. (1982). A field-sequential colour CRT using a liquid crystal colour switch. In SID Digest, 13, 172–173. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  11. Clerc, J.F., Aizawa, M., Yamauchi, S., & Duchene, J. (1989). Highly multiplexed superhomeotropic LCD. Proceedings of Japan Display 89, (pp. 188–191 ). Playa del Rey, Calif.: Society for Information Display.Google Scholar
  12. Clark, N.A., & Lagerwall, S.T. (1980). Submicrosecond bistable electro-optic switching in liquid crystals. Applied Physics Letters, 36, 899.CrossRefGoogle Scholar
  13. Connor, A.R. (1990). Subtractive color STN-LCD display. Proceedings of Eurodisplay 90 (pp. 362–365 ). Berlin, Germany: VDE-Verlag GmbH.Google Scholar
  14. Coovert, R.E., King, C.N., & Tuenge, R.T. (1982). Feasibility of a dual-color ACTFEL display. In SID Digest, 13, 128–129. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  15. Craighead, H.G., Cheng, J., & Hackwood, S. (1982). New display based on electrically induced index matching in an inhomogeneous medium. Applied Physics Letters, 40, 22–24.CrossRefGoogle Scholar
  16. Dijon, J., Maltese, P., & Ebel, C. (1987). A 6 inch diagonal black and white ferroelectric panel suitable for TV rate and grey levels. Proceedings of Eurodisplay 87, (pp. 40–43 ). London, England: Institute of Physics.Google Scholar
  17. Doane, J.W., Vaz, N.A.P., & Chidichima, G. (1985). Displays from a new type of liquid crystal microdroplet dispersion. In Proceedings of the 1985 International Display Research Conference, (pp. 153–154 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  18. Emberson, D.L., Caple, A., Field, R.L., Jervis, M.H., Smith, J., & Lamport, D.L. (1986). A thin flat high resolution CRT for data graphics. In SID Digest, 17, 228–231. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  19. Fergason, J.L. (1985). Liquid crystal color display and method. US Patent Application No. 707486.Google Scholar
  20. Frampton, C.S., O’Connor, J.M., Peterson, J., & Silver, J. (1988). Enhanced colours and properties in the electrochromic behaviour of mixed rare-earth-element bisphthalocynanines. Displays, 4, 174–178.CrossRefGoogle Scholar
  21. Friedman, P.S. (1988). Color AC/DC plasma and vacuum fluorescent displays. Society for Information Display 1988 International Symposium Seminar Lecture Notes, Vol. 1, (pp. 2B1–2B34). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  22. Friedman, P.S., Peters, E.F., & Repetti, A.A. (1988). Photoluminescent AC plasma colour displays. Proceedings of the Society for Information Display, 29, 141–145.Google Scholar
  23. Gass, P.A., Mosley, A., Nicholas, B.M., Brown, J.T., Edwards, C.P., & McDonnell, D.G. (1987). A polyimide processing technique for the manufacture of SBE displays. Proceedings of the Society for Information Display, 28, 381–384.Google Scholar
  24. Gomer, F.E., Silverstein, L.D., Monty, R.W., Huff, J.W., & Johnson, M.J. (1988). A perceptual basis for comparing pixel selection algorithms for binary color matrix displays. In SID Digest, 19, 435–438. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  25. Grant, D.J.A., Jones, B.K., & Clark, M.G. (1987). Nematic LCD shutters with sub-millisecond switching times. Proceedings of Eurodisplay 87, (pp. 67–70 ). London, England: Institute of Physics.Google Scholar
  26. Grant, D.J.A., & Nicholas, B.M. ( 1989, April). An A5 ferroelectric liquid crystal two-colour shutter. Paper presented to British Liquid Crystal Society Annual Conference, Sheffield.Google Scholar
  27. Hatoh, H., Kato, Y., Komatsubara, Y., Saitoh, A., Yanagisawa, T., Kasahara, K., Ide, K., Hori, H., & Matsumoto, S. (1985). Large-area projection HAN-mode multicolor TFTaddressed LCD. In Proceedings of the 1985 International Display Research Conference, (pp. 62–65 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  28. Higton, M.H., Dovey, M.P., & Johnson, I.P. (1985). High contrast thin-film/powder composite DCEL devices. In Proceedings of the 1985 International Display Research Conference, (pp. 106–107 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  29. Hilsum, C., & Shanks, I.A. (1974). Colour display systems. UK Patent 149–1471.Google Scholar
  30. Hinotani, K., Kishimoto, S., & Terada, K. (1988). Flat fluorescent lamp for LCD backlight. In Proceedings of the 1988 International Displays Research Conference, (pp. 52–55 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.CrossRefGoogle Scholar
  31. Hughes, A.J. (1987). Controlled illumination for birefringent colour LCDs. Displays, 8, 139–141.CrossRefGoogle Scholar
  32. Hughes, A.J., McDonnell, D.G., & Hedges, S. (1987). Nearly diffuse reflectors for LCDs. Displays, 8, 69–74.CrossRefGoogle Scholar
  33. Inoue, F., Jitsukata, H., Eto, M., Shimizu, T., & Ando, K. (1986). A 4V flat colour TV receiver. Proceedings of Japan Display 86, (pp. 168–171 ). Playa del Rey, Calif.: Society for Information Display.Google Scholar
  34. Inoue, H., Mizutome, A., Yoshihara, S., Kanbe, J., & Iijima, S. (1988). High duty driven FLC display panel. In Proceedings of the 1988 International Display Research Conference,late paper. New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  35. Kamamori, H., Hoshino, M., Fukuchi, T., Itoh, K., Kutsutani, S., Taguchi, M., Iwasa, K., & Tatusmi, N. (1988). Multicolor STN-LCD with self-aligned tricolor filters in a black matrix. In Proceedings of the 1988 International Display Research Conference, (pp. 90–93 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.CrossRefGoogle Scholar
  36. Kimura, N., Shinomiya, T., Yamamato, K., Ichimura, Y., Nakagawa, K., Ishii, Y., & Matsuura, M. (1988). Multicolor display by double-layered supertwisted-nematic LCD. In SID Digest, 19, 49–52. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  37. King, C.N. (1988). Color TFEL technology. In Society for Information Display 1988 International Seminar Lecture Notes, Vol. 1, (pp. 2A.1–2A. 31 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  38. Koh, H., Sawada, K., Ohgawara, M., Kuwata, T., Tsubota, H., Akatsuka, M., & Matsuhiro, T. (1988). A 960 x 240 pixel multicolor supertwisted-nematic display. In SID Digest, 19, 53–56. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  39. Koizumi, T., & Uchida, T. (1988). Reflective multicolor LCD (II): Improvement in the brightness. Proceedings of the Society for Information Display, 29, 157–160.Google Scholar
  40. Latham, W.J., Brewer, T.L., Hawley, D.W., Lamb, J.E., & Stichnote, L.K. (1987). Polyimide color filters for liquid crystal displays. Proceedings of the Society for Information Display, 28, 385–389.Google Scholar
  41. Lewis, M.R., Wiltshire, M.C.K., Cuddy, A., Stanford, J., Sage, I., Griffiths, J., & Tailor, S. (1988). A fluorescent dyed phase-change LCD. Proceedings of the Society for Information Display, 29, 233–236.Google Scholar
  42. Mansell, J.R., Washington, D., Knapp, A.G., Hucks, A.W., & Smith, D.A. (1988). The achievement of color in the 12-inch channel-multiplier CRT. Proceedings of the Society for Information Display, 29, 201–205.Google Scholar
  43. Matsumoto, S., Hatoh, H., Murayama, A., Yamamoto, T., Kondo, S., & Kamagami, S. (1988). A single-cell high-quality black and white ST LCD. In Proceedings of the 1988 International Display Research Conference, (pp. 182–183 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.CrossRefGoogle Scholar
  44. Migliorato, P. (1988). Active matrix LCDs and TFTs. In Society for Information Display 1988 International Symposium Seminar Lecture Notes, Vol. 1, (pp. 51–535 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  45. Morimoto, K., & Imaizumi, E. (1986). 320 x 320 pixel colour graphic FLVFD. Proceedings of Japan Display 86, (pp. 516–519 ). Playa del Rey, Calif.: Society for Informatiuon Display.Google Scholar
  46. Morimoto. K., & Pykosz, T.L. (1986): Vacuum fluorescent displays. In Society for Information Display 1986 International Symposium Seminar Lecture Notes, Vol. 1, (pp. 1.2.1–1.2. 46 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  47. Odai, H., Hanami, T., Hara, M., Iwasa, K., & Tatsumi, N. (1988). Optical compensation of super twisted nematic LCD applied by polymer retardation film. In Proceedings of the 1988 International Display Research Conference, (pp. 195–198 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.CrossRefGoogle Scholar
  48. Pykosz, T.L., Morimoto, K., & Imaizumi, E. (1985). Color graphic front luminous VFD. In SID Digest, 16, 366–369. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  49. Raynes, E.P., & Shanks, I.A. (1974). Fast-switching twisted nematic electro-optical shutter and colour filter. Electronics Letters, 4, 114–115.CrossRefGoogle Scholar
  50. Ross, P.W. (1988). 720 x 400 matrix ferroelectric display operating at video frame rate. In Proceedings of the 1988 International Display Research Conference, (pp. 185–190 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.CrossRefGoogle Scholar
  51. Saunders, F.C., Wright, L., & Clark, M.G. (1984). Intermolecular guest-host interactions and the optical order parameter of pleochroic dyes. In A.C. Griffin & J.F. Johnson (Eds.) Liquid crystals and ordered fluids, Vol. 4, (pp. 831–852 ). New York, NY: Plenum.CrossRefGoogle Scholar
  52. Scheffer, T.J., & Nehring, J. (1984). A new highly multiplexible liquid crystal display. Applied Physics Letters, 45, 1021–1023.CrossRefGoogle Scholar
  53. Silverstein, L.D., & Lepkowski, J.S. (1986). The perception of color primary spatial distribution in color information displays. In SID Digest, 17, 416–419. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  54. Suginoya, M., Kamamori, H., Iwasa, K., Kai, M., Nomura, T., Yasukawa, J., & Suzuki, T. (1987). An electrodeposited tricolor filter for use in full colour LCD. Proceedings of the Society for Information Display, 28, 115–122.Google Scholar
  55. Tadokoro, K., Koizumi, T., & Uchida, T. (1988). Reflective multicolor LCD (I): Consideration of the color purity and brightness. Proceedings of the Society for Information Display, 29, 151–155.Google Scholar
  56. Tanaka, S., Mikami, Y., Nishiura, J., Ohshio, S., Yoshiyama, H., & Kobayashi, H. (1987). A full-color thin-film electroluminescent device with two stacked substrates and color filters. In SID Digest, 18, 234–237. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  57. to Velde, T.S., & Zegers-van Duynhoven, A.T.A. (1984). The electroscopic fluid display. Proceedings of Eurodisplay 84, (pp. 45–48 ). Paris, France: Société des Electriciens, des Electroniciens et des Radioélectriciens.Google Scholar
  58. Uchida, T., Katagishi, T., Onodera, M., & Shibata, Y. (1985). Reflective multicolour liquid crystal display. Proceedings of the 1985 International Display Research Conference, (pp. 235–239 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  59. Ueno, T., Naemura, S., Tani, C., Noguchi, K., & Motomura, T. (1988). High quality organic-pigment colour filter for color LCD. Proceedings of the Society for Information Display, 29, 105–107.Google Scholar
  60. van Ewyk, R.L., O’Connor, I., Mosley, A., Cuddy, A., Hilsum, C., Blackburn, C., Griffiths, J., & Jones, F. (1986). Anisotropic fluorophors for liquid crystal displays. Displays, 7, 155–160.CrossRefGoogle Scholar
  61. Vuilleumier, R., Perret, A.-E., Porret, F., & Weiss, P. (1984). Novel electromechanical microshutter display device. Proceedings of Eurodisplay 84, (pp. 41–44 ). Paris, France: Société des Electriciens, des Electroniciens et des Radioélectriciens.Google Scholar
  62. Washington, D. (1986). Colour display using the channel multiplier CRT. Proceedings of Japan Display 86, (pp. 218–221 ). Playa del Rey, Calif.: Society for Informatiuon Display.Google Scholar
  63. Washington, D., Mansell, J.R., Lamport, D.L., Knapp, A.G., & Woodhead, A.W. (1985). Progress of the flat channel multiplier CRT. In SID Digest, 16,166–169. New York, NY Palisades Institute for Research Services, Inc.Google Scholar
  64. Watanabe, M. (1987). Thin cathode ray tubes. Proceedings of Eurodisplay 87, (pp. 73–76 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  65. Watanabe, M. (1988). Thin cathode ray tubes. Proceedings of the Society for Information Display, 29, 187–191.Google Scholar
  66. Waters, C.M., Brimmell, V., & Raynes, E.P. (1983). Highly multiplexable dyed liquid crystal displays. In Proceedings of the 3rd International Display Research Conference, (pp. 396–399 ). Playa del Rey, Calif.: Society for Informatiuon Display.Google Scholar
  67. Weber, L.F. (1985). Plasma displays. In L.E. Tannas, Jr. (Ed.) Flat-panel displays and CRTs, (pp. 332–414 ). New York, NY: Van Nostrand Reinhold.CrossRefGoogle Scholar
  68. White, J.C. (1988). Colour LCD TV. Physics in Display Technology, 19, 91–100.CrossRefGoogle Scholar
  69. Woodhead, A.W. (1984). Flat cathode ray tubes. Physics in Display Technology, 15, 86–91.CrossRefGoogle Scholar
  70. Woodhead, A.W., Washington, D., Knapp, A.G., Mansell, J.R., & Overall, C.D. (1982). The channel electron multiplier CRT: concept, design and performance. In SID Digest, 13, 206–207. New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  71. Yamano, M., Hinotani, K., Hayama, H., Kishimoto, S., Sugishita, S., & Matsudaira, M. (1985). A color flat cathode ray tube. IEEE Transactions on Consumer Electronics, 31, 163–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • M. G. Clark
    • 1
  1. 1.GEC Hirst Research CentreMiddlesexUK

Personalised recommendations