Coherent Optical Interactions in Semiconductors pp 199-222 | Cite as
Ultrashort Coherent Excitations in Semiconductors
Chapter
Abstract
The origin of this line of research was marked by the realization that optical four-wave mixing techniques can be used to generate coherent excitations in matter(1). The four-wave mixing technique of particular interest here is “Coherent Anti-Stokes Raman Scattering” (CARS) and its time-resolved (TRCARS) version(2). A semiclassical theoretical description of these nonlinear processes has been presented by Placzek(3).
Keywords
Femtosecond Laser Decay Channel Longitudinal Optic Phonon Longitudinal Optic Coherent Phonon
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.See e.g. Levenson, M. D., and Song, J. J. in Coherent Nonlinear Optics, ed. Feld, M. S. and Letokhov, V. S. (Springer: Berlin) 1980.Google Scholar
- 2.See e.g. Demtröder, W. D. in Laser Spectroscopy, (Springer: Berlin) 1981.Google Scholar
- 3.Placzek, G., Handbuch der Radiologie, ed. Marx. E., (Akademische Verlagsgesellochaft: Leipsig) 1934.Google Scholar
- 4.Loudon, R., in The Quantum Theory of Light (Clarendon Press, Oxford) 1983.Google Scholar
- 5.Zinth, W., Lauberau, A. and Kaiser, W., Opt. Commun. 49, 935 (1978).Google Scholar
- 6.See e.g. Verdeyen, J. T., in Laser Electronics, 2nd edition (Prentice Hall, Englewood Cliffs, NJ) 1989.Google Scholar
- 7.Juhasz, T., Kuhl, J., and Bron, W. E., Opt. Lett. 13, 577 (1988).ADSCrossRefGoogle Scholar
- 8.Juhasz, T., Smith, G. O., Mehta, S. M., Harris, K. and Bron, W. E., IEEE J. Quantum Electronics, 25, 1704 (1989).ADSCrossRefGoogle Scholar
- 9.Kuhl, J. and Bron, W. E., Sol. State Commun. 49, 935 (1984).ADSCrossRefGoogle Scholar
- Bron, W. E., Kuhl, J., and Rhee, B. K., Phys. Rev. 34, 6961 (1986).ADSCrossRefGoogle Scholar
- 10.Juhasz, T. and Bron, W. E., Phys. Rev. Lett. 63, 2385 (1989).ADSCrossRefGoogle Scholar
- 11.Lauberau, A., and Kaiser, W., Res. Mod. Phys. 50, 607 (1978).ADSCrossRefGoogle Scholar
- 12.See e.g. Bairamov, B. Kh., Kitaev, Yu. E., Negoduiko, N. and Kashkotgev, M. K., Sov. Phys. Solid State 16, 1323 (1974).Google Scholar
- 13.Bairamov, B. H., Parshin D. A., Toporov, V. V. and Ubbaillaev, S. B., Sov. JTF Letters 5, 1116 (1979).Google Scholar
- 14.See e.g. Bilz, H. and Kress, W., in Phonon Dispersion Relations in Insulators (Springer: Berlin) 1979.CrossRefGoogle Scholar
- 15.Ushioda, S. and Müller, J. D., Sol. State Commun. 11, 299 (1972).ADSCrossRefGoogle Scholar
- 16.Rhee, B. K. and Bron, W. E., Phys. Rev. 34, 7107 (1986).ADSCrossRefGoogle Scholar
- 17.Thomas, D. G., Gershenson, M. and Hopfield, J. J., Phys. Rev. 34, 7107 (1986).CrossRefGoogle Scholar
- 18.Kunc, K., Ann. Phys. (Paris) 8, 319 (1973).Google Scholar
- 19.Orbach, R. and Vredevoe, L. A., Phys. 1, 91 (1964).Google Scholar
- 20.Smith, G. O., Juhasz, T., Bron, W. E., and Levinson, V. B., Phys. Rev. Lett. 68, 2366 (1992).ADSCrossRefGoogle Scholar
- 21.Bron, W. E., Juhasz, T., Mehta, S., Phys. Rev. Lett. 62, 1655 (1989).ADSCrossRefGoogle Scholar
- Mehta, S., Juhasz, T., and Bron, W. E., Phys. Rev. B45, 209 (1992).ADSGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1994