Electron Scattering from Chiral Molecules

Part of the Perspectives on Individual Differences book series (PIDF)


It is generally believed that the formation of optically active molecules was a necessary step towards the origin of life. Optically active (or chiral) molecules usually exist in two forms, the l- and d-forms, which are mirror images of each other. In living organisms only one of the two alternative enantiomers is found. Apart from a few exceptions, the amino acids occurring in natural proteins belong to the l-species and sugars to the d-species.


Spin Polarization Electron Scattering Chiral Molecule Proper Scalar Asymmetric Carbon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Vester, T. L. V. Ulbricht, and H. Krauss, Naturwissenschaften46, 68 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    B. Ya. Zel’dovich, D. B. Saakyan, and I. I. Sobelman, JETP Lett.25, 94 (1977).ADSGoogle Scholar
  3. 3.
    A. S. Garay and P. Hrasko, J. Mol. Evolution6, 77 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Hegstrom, D. W. Rein, and P. G. H. Sandars, J. Chem. Phys.73, 2329 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    S. F. Mason and G. Tranter, Chem. Phys. Lett.94, 34 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    S. F. Mason and G. Tranter, Mol. Phys.53, 1091 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    S. F. Mason, Nature311, 19 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    B. Ritchie, Phys. Rev. A13, 1411 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Cherepkov, J. Phys. B16, 1543 (1983).ADSGoogle Scholar
  10. 10.
    G. Schönhense, private communication.Google Scholar
  11. 11.
    P. S. Farago, J. Phys. B13, L567 (1980).ADSGoogle Scholar
  12. 12.
    J. Kessler, Polarised Electrons (Springer-Verlag, Berlin, 1985).CrossRefGoogle Scholar
  13. 13.
    P. S. Farago, J. Phys. B14, L743 (1981).ADSGoogle Scholar
  14. 14.
    M. V. Hobden, Nature216, 678 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    P. Hrasko, Reports of the central research institute of Physics, Budapest, KFKI 73-40.Google Scholar
  16. 16.
    R. A. Hegstrom, Nature297, 643 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    A. Rich, J. Van House, and R. A. Hegstrom, Phys. Rev. Lett.48, 1341 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    D. W. Rein, J. Mol. Evolution4, 15 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    J. Kessler, J. Phys. B15, L101 (1982).ADSGoogle Scholar
  20. 20.
    S. Hayashi, J. Phys. C19, 2601 (1986).ADSGoogle Scholar
  21. 21.
    M. Fink and A. C. Yates, At. Data1, 385 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    M. J. M. Beerlage, P. S. Farago, and M. J. Van Der Wiel, J. Phys. B14, 3245 (1981).ADSGoogle Scholar
  23. 23.
    D. W. Gidley, A. Rich, J. Van House, and P. W. Zitzewitz, Nature297, 639 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    D. M. Campbell and P. S. Farago, Nature318, 52 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    D. W. Walker, J. Phys. B15, L289 (1982).ADSGoogle Scholar
  26. 26.
    D. Thompson, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. Blum
    • 1
  1. 1.Institute for Theoretical Physics IUniversity of MünsterMünsterGermany

Personalised recommendations