Superpositions of Binomial States and Schrödinger Cats

  • Antonio Vidiella-Barranco
  • José Antonio Roversi
Conference paper

Abstract

We introduce quantum superpositions of binomial states ∣Ψ〉s), such that1
$$ \left| {{\Psi _s}} \right\rangle = N\sum\limits_{n = 0}^M {[1 + ( - {1^n}{e^{i\phi }}]} B_n^M\left| n \right\rangle , $$
(1)
where \( N = {\left[ {2\left( {1 + \cos \phi \Sigma _{n = 0}^m{{\left( { - 1} \right)}^n}{{\left| {B_n^M} \right|}^2}} \right)} \right]^{ - 1/2}} \) is the normalization factor, and ∅ a relative phase connected to the generation process.

Keywords

Relative Phase Coherent State Normalization Factor Photon Number Nonlinear Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Vidiella-Barranco and J.A. R.oversi, Quantum superpositions of binomial states of light, accepted for publication in J. Mod. Opt.Google Scholar
  2. 2.
    V. Buzeh, A. Vidiella-Barranco and P.L. Knight, Superpositions of coherent states: squeezing and dissipation, Phys. Rev. A 45: 6570 (1992).CrossRefGoogle Scholar
  3. 3.
    A.. Vidiella-Barranco and J.A. R.oversi, Statistical and phase properties of the binomial states of the electromagnetic field, Phys. WI). A 50: 5233 (1994).Google Scholar
  4. 3.
    B.Yurke and D.Stoler, Generating quantum superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Reza. Lett. 57: 13 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Antonio Vidiella-Barranco
    • 1
  • José Antonio Roversi
    • 1
  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations