Cavity QED, Entanglement and Mesoscopic Quantum Coherences

  • S. Haroche
  • J. M. Raimond
Conference paper

Abstract

Cavity Quantum Electrodynamics1 studies the behaviour of an atom in a small “box” whose typical size is of the order of the characteristic atomic emission wavelength. In such a confined space, the field amplitude associated with vacuum fluctuations in a mode is large and the coupling of the atom with these fluctuations becomes very strong, leading to non-linear optical effects at a quite unusual scale. Manipulation of atom and field properties is then possible. Most strikingly, one can affect the field in the cavity by coupling it to a single atom which acts as a microscopic “index” altering the field phase or frequency1,2. A quantum control of the field becomes then feasible, since the single atom can be prepared in superposition of states corresponding to different index values. Among the fundamental experiments which are made possible by these novel field manipulation techniques, let us list Quantum Non Demolition detection of photons illustrating the measurement process1, 3, 4, demonstrations of quantum non-locality and the generation and study of mesoscopic coherences1, 4, 5, 6.

Keywords

Photon Number Rydberg State Microwave Pulse Linear Superposition Rydberg Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a general discussion of Cavity QED effects see S. Haroche “Cavity Quantum Electrodynamics” in “Systèmes fondamentaux en Optique Quantique”, les Houches session LIII, J. Dalibard, J. M. Raimond et J. Zinn Justin diteurs, Elsevier Science Publishers (1992).Google Scholar
  2. 2.
    S. Haroche and J. M. Raimond “Manipulation of non classical field states by atom interferometry” in “Cavity Quantum Electrodynamics”, supplement of Advances in Atom. and Molec. Physics, Berman editor, Academic Press (1994).Google Scholar
  3. 3.
    M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury, Quantum non-demolition measurements of small photon numbers by Rydberg atom phase sensitive detection, Phys. Rev. Lett. 65: 976 (1990).CrossRefGoogle Scholar
  4. 4.
    M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non demolition measurements and Schrödinger cat states, Phys. Rev. A45: 5193 (1992).CrossRefGoogle Scholar
  5. 5.
    S. Haroche, M. Brune, J. M. Raimond and L. Davidovich. “Mesoscopic Quantum Coherences in Cavity QED” in “Fundamentals of Quantum Optics IIF”, Ehlotzky editor, Springer Verlag (1993).Google Scholar
  6. 6.
    L. Davidovich, M. Brune, J. M. Raimond and S. Haroche, Mesoscopic quantum coherences in cavity QED: preparation and decoherence monitoring schemes, to be published (1995).Google Scholar
  7. 7.
    E. T. Jaynes and F. W. Cummings, Comparison of quantum and semi-classical radiation theories with application to the beam-maser, Proc. IEEE 51: 89 (1963).CrossRefGoogle Scholar
  8. 8.
    S. laroche. “Atoms and Photons in high-Q cavities: New Tests of Quantum Theory” in “Fundamental Problems in Quantum Theory”, Greenberger editor, Annals of the New York Academy of Science, New York, (1995).Google Scholar
  9. 9.
    P. Meystre, Cavity quantum optics and the quantum measurement process, in Progress in Optics XXX„ edited by E. Wolf(Elsevier Science, New York 1992 ) p. 261.Google Scholar
  10. 10.
    C. H. Bennet, G. Brassard, C. Crepeau, R. Josza, A. Peres and W. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolski-Rosen channels,Phys. Rev. lett. 70: 1895 (1993).CrossRefGoogle Scholar
  11. 11.
    L. Davidovich, A. Maali, M. Brune, J. M. Raimond and S. Haroche, Teleportation of an atomic state between two cavities using non local microwave fields, Phys. Rev. A, 50: R895 (1994).Google Scholar
  12. 12.
    A. Ekert, Quantum computation,in Atomic Physics 14, D. J. Wineland, C. E. Wieman and S. J. Smith eds, AIP press, New York, (1994) p. 450; A. Barenco, D. Deutsch and A. Ekert, Conditional quantum dynamics and logic gates, Phys. Rev. Lett. 74: 4083 (1995).CrossRefGoogle Scholar
  13. 13.
    Sleator T. and Weinfurter H., Realizable quantum logic gates, Phys. Rev. Lett. 74: 4087 (1995).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Domokos P. , Raimond J. M.Brune M. and Haroche S. , Simple cavity-QED two-bit universal quantum logic gate: principle and expected performances, Phys. Rev. A to be published.Google Scholar
  15. 15.
    D. Meschede, H. Walther, and N. Klein, One-atom maser, Phys. Rev. Lett. 54:551 (1985). G. Rempe, F. Schmidt-Kaler, and H. Walther, Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett. 64:2783 (1990). Benson O., Raithel G. and Walther H., Quantum jumps of the micromaser field: dynamic behavior close to phase transition points, Phys. Rev. Lett. 72: 3506 (1994).Google Scholar
  16. 16.
    M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, Realization of a two-photon maser oscillator, Phys. Rev. Lett. 59: 1899 (1987).CrossRefGoogle Scholar
  17. 17.
    F. Bernardot, P. Nussenzveig, M. Brune, J. M. Raimond, and S. Haroche, Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity, Euro. Phys. Lett. 17: 33 (1991).CrossRefGoogle Scholar
  18. 18.
    M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. M. Raimond and S. Haroche, From Lamb shift to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection, Phys. Rev. Lett 72: 3339 (1994).CrossRefGoogle Scholar
  19. 19.
    R. J. Thompson, G. Rempe and H. J. Kimble, Observation of normal mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68: 1132 (1992).CrossRefGoogle Scholar
  20. 20.
    K. An, J. J. Childs, R. R. Dasari and M. S. Feld, Microlaser: a laser with one atom in an optical resonator Phys. Rev. Lett. 73: 3375 (1994).CrossRefGoogle Scholar
  21. 21.
    R. G. Hulet, and D. Kleppner, Rydberg atoms in “circular” states, Phys. Rev. Lett 51: 1430 (1983).CrossRefGoogle Scholar
  22. 22.
    P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J. M. Raimond, S. Haroche and W. Gawlik, Preparation of high principal quantum numbers circular states of rubidium Phys. Rev. A48: 3991 (1993).Google Scholar
  23. 23.
    Gross, M. and Liang J., Is a circular Rydberg atom stable in a vanishing electric field?,, Phys. Rev. Lett. 57: 3160 (1986).CrossRefGoogle Scholar
  24. 24.
    N. Ramsey, Molecular Beams, Oxford University Press, New York (1985).Google Scholar
  25. 25.
    P. Filipowicz, J. Javanainen, and P. Meystre, Theory of a microscopic maser, Phys. Rev. A34:3077 (1986). L. A. Lugiato, M. O. Scully and H. Walther, Connection between microscopic and macroscopic maser theory, Phys. Rev A36,740 (1987);G. Rempe, and H. Walther, Subpoissonian atomic statistics in a micromaser, Phys. Rev. A42: 1650 (1990).Google Scholar
  26. 26.
    A. Einstein, B. Podolski, and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47: 777 (1935).CrossRefGoogle Scholar
  27. 27.
    J. S. Bell, Physics (Long Island City, NY) 1, 195 (1964).Google Scholar
  28. 28.
    P. Bogar and J. A. Bergou, Pump-coupled micromasers: Entangled trapping states of nonlocal fields, Phys. Rev. A51: 2381 (1995);CrossRefGoogle Scholar
  29. 29.
    Yurke, B. and Stoler, D., Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett. 57: 13 (1986)CrossRefGoogle Scholar
  30. 30.
    I. A. Malkin and V. I. Man’ko, Dynamical symmetries and coherent states of quantum systems, Nauka, Moscow (1979); J. J.nsky and A. V. Vinogradov, Squeezing via one-dimensional distribution of coherent states, Phys. Rev. Lett. 64:2771 (1990); W. Schleich, M. Pernigo and F. Lekien, Non classical states from two pseudo-classical states, Phys. Rev. A44:2172 (1991); V. Buzek, H. Moya-Cessa, P. L. Knight and S. D. L. Phoenix, Schrödinger cat states in the resonant Jaynes-Cummings model: collapse and revival of oscillations of the photon number distribution, Phys. Rev. A45: 8190 (1992).Google Scholar
  31. 31.
    J. Von Neumann, Die Mathematische Grundlagen der Quantenmechanik (Springer Verlag, Berlin 1932 ); K. Hepp, Quantum theory of measurement and macroscopic observables, Helv. Phys. Acta 45:237 (1972); J. S. Bell, On wave-packet reduction in the Coleman-Hepp model, HeIv. Phys. Acta 48:93 (1975); Quantum Theory and Measurement edited by J. A. Wheeler and W. Zurek (Princeton Univ Press, Princeton, 1983); W. Zurek, Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?, Phys. Rev. D24:1516 (1986);W. Zurek, Decoherence and the transition from quantum to classical Physics Today, Oct 1991, p. 36.Google Scholar
  32. 32.
    L. Davidovich, A. Maali, M. Brune, J. M. Raimond, and S. Haroche, Quantum switches and non-local microwave fields, Phys. Rev. Lett. 71: 2360 (1993).CrossRefGoogle Scholar
  33. 33.
    J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions, Phys. Rev. Lett. 74: 4091 (1995).CrossRefGoogle Scholar
  34. 34.
    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. London A400:97 (1985); D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London A425,73 (1989); D. Deutsch and R. Josza, Rapid solution of problems by quantum computation, Proc. Roy. Soc. London A439, 553 (1992).Google Scholar
  35. 35.
    S. Haroche, J. M. Raimond and M. Brune, Proceedings of the 12th International Conference on Laser Spectroscopy, M. Ingussio editor, 1995, to be published, World Scientific.Google Scholar
  36. 36.
    W. G. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A, 51: 992 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. Haroche
    • 1
  • J. M. Raimond
    • 1
  1. 1.Département de Physique de l’Ecole Normale SuperieureLaboratoire Kastler BrosselParis CedexFrance

Personalised recommendations