Fouling Community Structure: Effects of the Hydroid, Obelia Dichotoma, on Larval Recruitment

  • Jon D. Standing

Abstract

Hydroids are common, if not always conspicuous, animals in marine epibenthic communities, frequently growing on hard substrata, plants, and other animals. Yet the ecological roles of hydroids in these communities are only beginning to be understood. Hydroid stolons may overgrow and smother small sessile animals attached to the substratum or prevent the settlement of animals requiring the substratum for attachment (Coe, 1932; McDougall, 1943). Chemical suppressants produced by some hydroids can inhibit the growth of other hydroids (Katô, et al., 1967). Furthermore, some hydroid epizoites do not occur on hydranths, suggesting either predation on settling larvae or avoidance of the nematocyst-bearing regions by motile forms (Eggleston, 1972; Hughes, 1975).

Keywords

Percentage Cover Settling Surface Rocky Shore Control Plate Experimental Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayne, B.L. 1964. Primary and secondary settlement in Mytilus edulis L. (Mollusca). J. Anim. Ecol. 35: 513–523.CrossRefGoogle Scholar
  2. Boyd, M.J. 1971. Fouling community structure and development in Bodega Harbor, California. Ph.D. Dissertation, University of California, Davis. 191 pp.Google Scholar
  3. Christensen, H.E. 1967. Ecology of Hydractinia echinata (Fleming) (Hydroidea, Athecata) I. Feeding biology. Ophelia 4: 245–275.CrossRefGoogle Scholar
  4. Coe, W.R. 1932. Season of attachment and rate of growth of sedentary marine organisms at the pier of the Scripps Institution of Oceanography, La Jolla, California. Bull. Scripps Inst. Oceanogr., Univ. Calif. Tech. Ser. 3: 37–86.Google Scholar
  5. Crisp, D.J. 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. J. Exp. Biol. 32: 569–590.Google Scholar
  6. De Blok, J.W. and H.J. Geelen. 1958. The substratum required for the settling of mussels (Mytilus edulis L.). Arch. Néerl. Zool., Vol. Jubilaire: 446–460.Google Scholar
  7. Eggleston, D. 1972. Factors influencing the distribution of sublittoral ectoprocts off the south coast of the Isle of Man (Irish Sea). J. Nat. Hist. 6: 247–260.CrossRefGoogle Scholar
  8. Hatton, H. 1938. Essais de bionomie explicative sur quelques espèces intercotidales d’algues et d’animaux. Ann. Inst. Oceanogr. Monaco, 17: 241–348.Google Scholar
  9. Hughes, R.G. 1975. The distribution of epizoites on the hydroid Nemertesia antennina (L.). J. Mar. Biol. Ass. U.K. 55: 275–29CrossRefGoogle Scholar
  10. Katô, M., E. Hirai, and Y. Kakinuma. 1967. Experiments on the coaction among hydrozoan species in the colony formation. Sci. Rep. Tohoku Univ. Ser. 4 (Biol.) 33: 359–373.Google Scholar
  11. Keith, D.E. 1969. Aspects of feeding in Caprella californica Stimpson and Caprella equilibra Say (Amphipoda). Crustaceana 16: 119–124.CrossRefGoogle Scholar
  12. Keith, D.E. 1971. Substrate selection in caprellid amphipods of southern California, with emphasis on Caprella californica Stimpson and Caprella equilibra Say (Amphipoda). Pac. Sci. 25: 387–39Google Scholar
  13. Lewis, J.R. 1964. The Ecology of Rocky Shores. English University Press, London. 323 pp.Google Scholar
  14. Luckens, P.A. 1970. Breeding, settlement and survival of barnacles at artificially modified shore levels at Leigh, New Zealand. N. Z. J. Mar. Freshwater Res. 4: 497–51CrossRefGoogle Scholar
  15. McDougall, K.D. 1943. Sessile marine invertebrates of Beaufort, North Carolina. Ecol. Monogr. 13: 321–374.CrossRefGoogle Scholar
  16. Mackie, CO. 1966. Growth of the hydroid Tubularia in culture. In “The Cnidaria and their Evolution” (W.J. Rees, ed.), pp. 397–410. Academic Press, New York.Google Scholar
  17. Pyefinch, K.A. 1948. Notes on the biology of cirripedes. J. Mar. Biol. Ass. U. K. 27: 464–50CrossRefGoogle Scholar
  18. Pyefinch, K.A. and F.S. Downing. 1949. Notes on the general biology of Tubularia larynx Ellis & Solander. J. Mar. Biol. Ass. U. K. 28: 21–4CrossRefGoogle Scholar
  19. Round, F.E., J.F. Sloane, F.J. Ebling, and J. Am., Kitching. 1961. The ecology of Lough Ine. X. The hydroid Sertularia operculata (L.) and its associated flora and fauna: effects of transference to sheltered water. J. Ecol.. 49: 617–629.CrossRefGoogle Scholar
  20. Seed, R. 1969. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. I. Breeding and settlement. Qecologia 3: 277–316.Google Scholar
  21. Southward, A.J. 1956. The population balance between limpets and seaweeds on wave-beaten rocky shores. Rep. Mar. Biol. Sta. Pt. Erin, No. 68: 20–29.Google Scholar
  22. Standing, J.D., B. Browning, and J.W. Speth. 1975. The natural resources of Bodega Harbor. California Department of Fish and Game. 183 pp.Google Scholar
  23. Sutherland, J.P. 1974. Multiple stable points in natural communities. Amer. Nat. 108: 859–87CrossRefGoogle Scholar
  24. Tardy, J. 1962. Observations et expériences sur la métamorphose et la croissance de Capellinia exigua (A. & H.) (Mollusque, Nudibranche). C. R. Acad. Sci. Paris 254: 2242–2244.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Jon D. Standing
    • 1
  1. 1.Department of ZoologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations