Clostridia pp 105-144 | Cite as

Solvent Production

  • David T. Jones
  • David R. Woods
Part of the Biotechnology Handbooks book series (BTHA, volume 3)

Abstract

Fermentation processes using anaerobic microorganisms provide a potential route for the conversion of plant biomass and wastes from agriculture and industry to chemical feedstocks and fuels (Wiegel, 1980; Zeikus, 1980; Rogers, 1984). However, only a few industrial fermentation processes exist which utilize single species of anaerobic microorganisms for the production of acids and alcohols. The need to develop novel processes which are efficient and less energy-intensive, and which can compete economically with processes employing chemical synthesis, represents a major challenge for the biotechnology industry. Of the existing industrial fermentation processes, the production of bioethanol has achieved the greatest success and attracted the most attention. The only large-scale industrial fermentation utilizing anaerobic bacteria which has made a significant contribution to the production of chemical feedstocks is the acetone/butanol/ethanol fermentation (ABE fermentation) using Clostridium acetobutylicum strains (Jones and Woods, 1986). The ABE fermentation was the major route used for the production of these solvents during the first part of the century and up until the early 1960s was able to compete successfully with synthetic processes.

Keywords

Ethanol Production Butanol Production Clostridium Acetobutylicum Solvent Production Clostridium Thermocellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, H. I., and Crow, W., 1987, A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Appl. Env. Microbiol. 53:2496–2499.Google Scholar
  2. Afschar, A. S., Biebl, H., Schaller, K., and Schugerl, K., 1985, Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle, Appl. Microbiol. Biotechnol. 22:394–398.Google Scholar
  3. Afschar, A. S., Schaller, K., and Schurgerl, K., 1986, Continuous production of acetone and butanol with shear-activated Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 23:315–321.Google Scholar
  4. Allcock, E. R., and Woods, D. R., 1981, Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium, Appl. Env. Microbiol. 41 (2):539–541.Google Scholar
  5. Andersch, W., Bahl, H., and Gottschalk, G., 1982, Acetone-butanol production by Clostridium acetobutylicum in an ammonium-limited chemostat at low pH values, Biotechnol. Lett. 4 (1):29–32.Google Scholar
  6. Andersch, W., Bahl, H., and Gottschalk, G., 1983, Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum, Eur. J. Appl. Microbiol. Biotechnol. 18:327–332.Google Scholar
  7. Antranikian, G., Friese, C., Quentmeier, A., Hippe, H., and Gottschalk, G., 1984, Distribution of the ability for citrate utilization amongst Clostridia, Arch. Microbiol. 138:179–182.Google Scholar
  8. Baer, S. H., Blaschek, H. P., and Smith, T. L., 1987, Effect of butanol challenge and temperature of lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum, Appl. Env. Microbiol. 53:2854–2861.Google Scholar
  9. Bahl, H., and Gottschalk, G., 1985, Chapaumeters affecting solvent production by Clostridium acetobutylicum in continuous culture, Biotechnol. Bioeng. 514:217–223.Google Scholar
  10. Bahl, H., Andersch, W., and Gottschalk, G., 1982, Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat, Eur. J. Appl. Microbiol. Biotechnol. 15:201–205.Google Scholar
  11. Bahl, H., Gottwald, M., Kuhn, A., Rale, V., Andersch, W., and Gottschalk, G., 1986, Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum, Appl. Env. Microbiol. 52(1): 169–172.Google Scholar
  12. Ballongue, J., Amine, J., Masion, E., Petitdemange, H., and Gay, R., 1985, Induction of acetoacetate decarboxylase in Clostridium acetobutylicum, FEMS Microbiol. Lett. 29:273–277.Google Scholar
  13. Ballongue, J., Amine, J., Petitemange, H., and Gay, R., 1986, Regulation of acetate kinase and butyrate kinase by acids in Clostridium acetobutylicum. FEMS Microbiol. Lett. 35:295–301.Google Scholar
  14. Ballongue, J., Maison, E., Amine, J., Petitdemange, H., and Gay, R., 1987, Inhibitor effects of products of metabolism on growth of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 26:568–573.Google Scholar
  15. Bayer, E. A., Setter, E., and Lamed, R., 1985, Organization and distribution of the cellulosome in Clostridium thermocellum, J. Bacteriol. 163(2):552–559.PubMedGoogle Scholar
  16. Beesch, S. C., 1952, Acetone-butanol fermentation of sugars, Eng. Proc. Dev. 44:1677–1682.Google Scholar
  17. Beesch, S. C., 1953, Acetone-butanol fermentation of starches, Appl. Microbiol. 1:85–95.PubMedGoogle Scholar
  18. Bowles, L. K., and Ellefson, W. L., 1985, Effects of butanol on Clostridium acetobutylicum, Appl. Env. Microbiol. 50(5): 1165–1170.Google Scholar
  19. Brener, D., and Johnson, B. F., 1984, Relationship between substrate and concentration and fermentation product ratios in Clostridium thermocellum cultures, Appl. Env. Microbiol. 47 (5): 1126–1129.Google Scholar
  20. Chen, J. S., and Hiu, S. F., 1986, Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum), Biotechnol. Lett. 8 (5):371–376.Google Scholar
  21. Clarke, K. G., 1987, A reassessment of the production of acetone and butanol by Clostridium acetobutylicum in continuous culture, Ph.D. thesis, University of Cape Town, South Africa, pp. 1–195.Google Scholar
  22. Clarke, K. G., and Hansford, G. S., 1986, Production of acetone and butanol by Clostridium acetobutylicum in a product limited chemostat, Chem. Eng. Commun. 45:75–81.Google Scholar
  23. Clarke, K. G., Hansford, G. S., and Jones, D. T., 1988, The nature and significance of oscillatory behavior during solvent production by Clostridium acetobutylicum in Continuous culture, Biotechnol. Bioeng. 32:538–544.PubMedGoogle Scholar
  24. Conway, T., Sewell, G. W., Osman, Y. A., and Ingram, L. O., 1987, Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis, J. Bacteriol. 169:2591–2597.PubMedGoogle Scholar
  25. Corry, J. E. L., 1978, Possible sources of ethanol ante- and post-mortem: Its relationship to the biochemistry and microbiology of decomposition, J. Appl. Bacteriol. 44:1–56.PubMedGoogle Scholar
  26. Cummins, C. S., and Johnson, J. L., 1971, Taxonomy of the Clostridia: wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing Clostridia, J. Gen. Microbiol. 67:33–46.Google Scholar
  27. Datta, R., and Zeikus, J. G., 1985, Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids, Appl. Environ. Microbiol. 49(3):522–529.PubMedGoogle Scholar
  28. Davies, R., 1943, Studies on the acetone-butanol fermentation. 4. Acetoacetic acid decarboxylase of Cl. acetobutylcium (BY), Biochem. J. 37:230–238.PubMedGoogle Scholar
  29. Doelle, H. W. (ed.), 1975, Bacterial Metabolism, 2nd ed., Academic Press, New York.Google Scholar
  30. Doremus, M. G., Linden, J. C., and Moreira, A. R., 1985, Agitation and pressure effects on acetone-butanol fermentation, Biotechnol. Bioeng. 27:852–860.PubMedGoogle Scholar
  31. Dürre, P., Kuhn, A., and Gottschalk, G., 1986, Treatment with allyl alcohol selects specifically for mutants of Clostridium acetobutylicum defective in butanol synthesis, FEMS Microbiol. Lett. 36:77–81.Google Scholar
  32. Dürre, P., Kuhn, A., Gottwald, M., and Gottschalk, G., 1987, Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 26: 268–272.Google Scholar
  33. Dyr, J., Protiva, J., and Praus, R., 1958, Formation of neutral solvents in continuous fermentation by means of Clostridium acetobutylicum, in: Continuous Cultivation of Microorganisms (I. Malek, ed.), Czechoslovakian Academy of Sciences, Prague, pp. 210–226.Google Scholar
  34. Ennis, B. M., and Maddox, I. S., 1985, Use of Clostridium acetobutylicum P262 for production of solvents from whey permeate, Biotechnol. Lett. 7(8):601–606.Google Scholar
  35. Ennis, B. M., and Maddox, I. S., 1987, The effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum, Biotechnol. Bioeng. 29: 329–334.PubMedGoogle Scholar
  36. Ennis, B. M., Gutierrez, N. A., and Maddox, I. S., 1986, The acetone-butanol-ethanol fermentation: A current assessment, Process Biochem. October: 131–147.Google Scholar
  37. Ennis, B. M., Qureshi, N., and Maddox, I. S., 1987, In-line toxic product removal during solvent production by continuous fermentation using immobilized Clostridium acetobutylicum, Enzyme Microb. Technol. 9:672–675.Google Scholar
  38. Fick, M., Pierrot, P., and Engasser, J. M., 1985, Optimal conditions for long-term stability of acetone-butanol production by continuous cultures of Clostridium acetobutylicum, Biotechnol. Lett. 7 (7):503–508.Google Scholar
  39. Finn, R. K., and Nowrey, J. E., 1958, A note on the stability of Clostridia when held in continuous culture, Appl. Microbiol. 7:29–32.Google Scholar
  40. Fond, O., Petitdemange, E., Petitdemange, H., and Engasser, J. M., 1983, Cellulose fermentation by a coculture of a mesophilic cellulolytic Clostridium and Clostridium acetobutylicum, Biotechnol. Bioeng. Symp. 13:217–224.Google Scholar
  41. Fond, O., Matta-Ammouri, G., Petitdemange, H., and Engasser, J. M., 1985, The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 22(3): 195–200.Google Scholar
  42. Forberg, C., Enfors, S. O., and Haggstrom, L., 1983, Control of immobilized, non-growing cells for continuous production of metabolites, Eur. J. Appl. Microbiol. Biotechnol. 17:143–147.Google Scholar
  43. Freier, D., and Gottschalk, G., 1987, L(+)-lactate dehydrogenase of Clostridium acetobutylicum is activated by fructose-1,6-bisphosphate, FEMS Microbiol. Lett. 43:229–233.Google Scholar
  44. Garcia, A., Iannotti, E. L., and Fischer, J. L., 1986, Butanol fermentation liquor production and seChapaution by reverse osmosis, Biotechnol. Bioeng. 28:785–791.PubMedGoogle Scholar
  45. George, H. A., and Chen, J. S., 1983, Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (Synonym, C. butylicum), Appl. Environ. Microbiol. 46 (2):321–327.PubMedGoogle Scholar
  46. George, H. A., Johnson, J. L., Moore, W. E. C., Holdeman, L. V., and Chen, J. S., 1983, Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum, Appl. Environ. Microbiol. 45(3): 1160–1163.PubMedGoogle Scholar
  47. Germain, P., Toukourou, F., and Donaduzzi, L., 1986, Ethanol production by anaerobic thermophilic bacteria: Regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum, Appl. Microbiol. Biotechnol. 24:300–305.Google Scholar
  48. Gibbs, D. F., 1983, The rise and fall (. . . and rise?) of acetone/butanol fermentations, Trends Biotechnol. 1:12–15.Google Scholar
  49. Gottschal, J. C., and Morris, J. G., 1981, The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate, FEMS Microbiol. Lett. 12:385–389.Google Scholar
  50. Gottschal, J. C., and Morris, J. G., 1982, Continuous production of acetone and butanol by Clostridium acetobutylicum growing in turbidostat culture, Biotechnol. Lett. 4(8):477–482.Google Scholar
  51. Gottschalk, G., 1979, Butyrate and butanol-acetone fermentation, in: Bacteriol Metabolism, (M. P. Starr, ed.), Springer-Verlag, Berlin, pp. 182–215.Google Scholar
  52. Gottschalk, G., Andreesen, J. R., and Hippe, H., 1981, The genus Clostridium (nonmedical aspects), in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 1767–1803.Google Scholar
  53. Gottwald, M., Hippe, H., and Gottschalk, G., 1984, Formation of n-butanol from D-glucose by strains of ‘Clostridium tetanomorphum’ group, Appl. Env. Microbiol. 48 (3):573–576.Google Scholar
  54. Gottwald, M., and Gottschalk, G., 1985, The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation, Arch. Microbiol. 143:42–46.Google Scholar
  55. Griffith, W. L., Compere, A. L., and Googin, J. M., 1983, Novel neutral solvents fermentations, Dev. Ind. Microbiol. 24:347–352.Google Scholar
  56. Groot, W. J., and Luyben, K. C. A. M., 1987, Continuous production of butanol from a glucose/xylose mixture with an immobilized cell system coupled to pervaporation, Biotechnol. Lett. 9:867–870.Google Scholar
  57. Groot, W. J., Schoutens, G. H., Van Beelen, P. N., Van den Oever, C. E., and Kossen, N. W. F., 1984a, Increase of substrate conversion by pervaporation in the continuous butanol fermentation, Biotechnol. Lett. 6(12):789–792.Google Scholar
  58. Groot, W. J., van den Oever, C. E., and Kossen, N. W. F., 1984b, Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation, Biotechnol. Lett. 6(11):709–714.Google Scholar
  59. Haggström, L., and Enfors, S. O., 1982, Continuous production of butanol with immobilized cells of Clostridium acetobutylicum, Appl. Biochem. Biotechnol. 7:35–37.Google Scholar
  60. Haggström, L., and Molin, N., 1980, Calcium alginate immobilized cells of Clostridium acetobutylicum for solvent production, Biotechnol. Lett. 2:241–246.Google Scholar
  61. Hartmanis, M. G. N., 1987, Butyrate Kinase from Clostridium acetobutylicum, J. Biol. Chem. 262: 617–621.PubMedGoogle Scholar
  62. Hartmanis, M. G. N., and Gatenbeck, S., 1984, Intermediary metabolism in Clostridium acetobutylicum: Levels of enzymes involved in the formation of acetate and butyrate, Appl. Env. Microbiol. 47(6): 1277–1283.Google Scholar
  63. Hartmanis, M. G. N., Klason, T., and Gatenbeck, S., 1984, Uptake and activation of acetate and butyrate in Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 20(1):66–71.Google Scholar
  64. Hartmanis, M. G. N., Ahlman, H., and Gatenbeck, S., 1986, Stability of solvent formation in Clostridium acetobutylicum during repeated subculturing, Appl. Microbiol. Biotechnol. 23: 369–371.Google Scholar
  65. Hastings, J. H. J., 1978, Acetone-butyl alcohol fermentation, in: Economic Microbiology, Primary Products of Metabolism, Vol. 2 (A. H. Rose, ed.), Academic Press, New York, pp. 31–45.Google Scholar
  66. Hermann, M., Fayolle, F., Marchal, R., Podvin, L., Sebald, M., and Vandecasteele, J. P., 1985, Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum, Appl. Env. Microbiol. 50(5): 1238–1243.Google Scholar
  67. Herrero, A. A., 1983, End-product inhibition in anaerobic fermentations, Trends Biotechnol. 1 (2):49–53.Google Scholar
  68. Herrero, A. A., and Gomez, R. F., 1980, Development by ethanol tolerance in Clostridium thermocellum: Effect of growth temperature, Appl. Env. Microbiol. 40:571–577.Google Scholar
  69. Herrero, A. A., Gomez, R. F., and Roberts, M. F., 1982, Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum, Biochim. Biophys. Acta 693:195–204.PubMedGoogle Scholar
  70. Herrero, A. A., Gomez, R. F., and Roberts, M. F., 1985, 31P-NMR studies of Clostridium thermocellum: Mechanisms of endproduct inhibition by ethanol, J. Biol. Chem. 260:7442–7451.PubMedGoogle Scholar
  71. Hiu, S. F., Zhu, C-X., Yan, R-T., and Chen, J-S., 1987, Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum), Appl. Env. Microbiol. 53:697–703.Google Scholar
  72. Holdeman, L. V., Cato, E. P., Moore, W. E. C. (eds.), 1977, Anaerobe Laboratory Manual, 4th Ed., Virginia Polytechnic Institute, Blacksburg, Virginia.Google Scholar
  73. Holt, R. A., Stephens, G. M., and Morris, J. G., 1984, Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH, Appl. Env. Microbiol. 48(6): 1166–1170.Google Scholar
  74. Hon-nami, K., Coughlan, M. P., Hon-nami, H., and Ljungdahl, L. G., 1986, Sechapaution and characterization of the complexes constituting the cellulolytic enzyme system of Clostridium thermocellum, Arch. Microbiol. 145:13–19.Google Scholar
  75. Hospodka, J., 1966, Industrial application of continuous fermentation, in: Theoretical and Methodological Bases of Continuous Culture of Microorganisms (I. Malek and Z. Fencl, eds.), Academic Press, New York, pp. 611–613.Google Scholar
  76. Hsu, E. J., and Ordal, Z. J., 1970, ComChapautive metabolism of vegetative and sporulating cultures of Clostridium thermosaccharolyticum, J. Bacteriol. 102(2):369–376.PubMedGoogle Scholar
  77. Huang, L., Forsberg, C. W., and Gibbins, L. N., 1986, Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products, Appl. Env. Microbiol. 51 (6): 1230–1234.Google Scholar
  78. Hugo, H. V., Schoberth, S., madan, V. K., and Gottschalk, G., 1972, Coenzyme specificity of dehydrogenases and fermentation of pyruvate by Clostridia, Arch. Mikrobiol. 87:189–202.Google Scholar
  79. Hungate, R. E., 1944, Studies on cellulose fermentation. I. The culture and physiology of an anaerobic cellulose-digesting bacterium, J. Bacteriol. 48:499–513.PubMedGoogle Scholar
  80. Hutkins, R. W., and Kashket, E. R., 1986, Phosphotransferase activity in A. acetobutylicum from acidogenic and solventogenic phase of growth, Appl. Env. Microbiol. 51:1121–1123.Google Scholar
  81. Hyun, H. H., and Zeikus, J. G., 1985, Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum, Appl. Env. Microbiol. 49 (5): 1174–1181.Google Scholar
  82. Ingram, L. O., 1986, Microbial tolerance to alcohols: Role of the cell membrane, TIBTECH. Feb:40–44.Google Scholar
  83. Ingram, L. O., and Buttke, T. M., 1984, Effects of alcohols on microorganisms, Adv. Microb. Physiol. 25:256–300.Google Scholar
  84. Janati-Idrissi, R., Junelles, A. M., El Kanouni, A., Petitdemange, H., and Gay, R., 1987, Selection de mutants de Clostridium acetobutylicum defectifs dans la production d’acetone, Ann. Inst. Pasteurl Microbiol. 138:313–323.Google Scholar
  85. Jobses, I. M. L., and Roels, J. A., 1983, Experience with solvent production by Clostridium beijerinckii in continuous culture, Biotechnol. Bioeng. 25:1187–1194.PubMedGoogle Scholar
  86. Jones, D. T., and Woods, D. R., 1986, The acetone butanol fermentation revisited, Microbiol. Rev. 50:484–524.PubMedGoogle Scholar
  87. Jones, D. T., van der Westhuizen, A., Long, S., Allcock, E. R., Reid, S. J., and Woods, D. R., 1982, Solvent production and morphological changes in Clostridium acetobutylicum, Appl. Environ. Microbiol. 43 (6): 1434–1439.PubMedGoogle Scholar
  88. Jungermann, K., Thauer, R. K., Leimenstoll, G., and Decker, K., 1973, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia, Biochim. Bi-ophys. Acta. 305:268–280.Google Scholar
  89. Kell, D. B., Peck, M. W., Rodger, G., and Morris, J. G., 1981, On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum, Biochem. Biophys. Res. Commun. 99:81–88.PubMedGoogle Scholar
  90. Kelly, W. J., Asmundson, R. V., and Hopcroft, D. H., 1987, Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidium sp. nov., Arch. Microbiol. 147:169–173.PubMedGoogle Scholar
  91. Kim, B. H., and Zeikus, J. G., 1985, Importance of hydrogen metabolism in regulation of solventogenesis by Clostridium acetobutylicum, Dev. Ind. Microbiol. 26:1–14.Google Scholar
  92. Kim, B. H., Bellows, P., Datta, R., and Zeikus, J. G., 1984, Control of carbon and electron flow in Clostridium acetobutylicum fermentations: Utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields, Appl. Env. Microbiol. 48 (4): 764–770.Google Scholar
  93. Krouwel, P. G., Van der Laan, W. F. M., and Kossen, N. W. F., 1980, Continuous production of n-butanol and isopropanol by immobilized, growing Clostridium butylicum cells, Biotechnol. Lett. 2:253–258.Google Scholar
  94. Krouwel, P. G., Groot, W. J., Kossen, N. W. F., and van der Laan, W. F. M., 1983, Continuous isopropanol-butanol-ethanol fermentation by immobilized Clostridium beijerinckii cells in a packed bed fermenter, Enzyme Microb. Technol. 5:46–55.Google Scholar
  95. Kutzenok, A., and Aschner, M., 1952, Degenerative processes in a strain of Clostridium butylicum, J. Bacteriol. 64:829–836.PubMedGoogle Scholar
  96. Lamed, R. J., and Zeikus, J. G., 1980, Novel NADP-linked alcohol aldehyde/ketone oxidoreductase in thermophilic, ethanolgenic bacteria, Biochem. J. 195:183–190.Google Scholar
  97. Lamed, R., Setter, E., and Bayer, E. A., 1983, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum, J. Bacteriol. 156 (2):828–836.PubMedGoogle Scholar
  98. Landuyt, S. L., Hsu, E. J., and Lu, M., 1983, Transition from acid fermentation to solvent fermentation in a continuous dilution culture of Clostridium thermosaccharolyticum, Ann. N. Y. Acad. Sci. 413:473–478.PubMedGoogle Scholar
  99. Largier, S. T., Long, S., Santangelo, J. D., Jones, D. T., and Woods, D. R., 1985, Immobilized Clostridium acetobutylicum P262 mutants for solvent production, Appl. Environ. Microbiol. 50 (2):477–481.PubMedGoogle Scholar
  100. Larrayoz, M. A., and Puigjaner, L., 1987, Study of butanol extraction through pervaporation in acetobutylic fermentation, Biotechnol. Bioeng. 30:692–696.PubMedGoogle Scholar
  101. Lee, S. F., and Forsfrerg, C. W., 1987, Isolation and some properties of a B-D-xylosidase from Clostridium acetobutylicum ATCC 824, Appl. Env. Microbiol. 53:651–654.Google Scholar
  102. Lee, S. F., Forsberg, C. W., and Gibbins, L. N., 1985, Cellulolytic activity of Clostridium acetobutylicum, Appl. Env. Microbiol. 50(2):220–228.Google Scholar
  103. Lemmel, S. A., Datta, R., and Frankiewicz, J. R., 1986, Fermentation of xylan by Clostridium acetobutylicum, Enzyme Microb. Technol. 8:217–221.Google Scholar
  104. Lenz, T. G., and Moreira, A. R., 1980, Economic evaluation of the acetone-butanol fermentation, Ind. Eng. Chem. Prod. Res. Dev. 19:478–483.Google Scholar
  105. LeChapaffil, C., Fayolle, F., Hermann, M., and Vandecasteele, J-P., 1987, Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: Effects of solvents, growth temperature and pH, J. Gen. Microbiol. 133:103–110.Google Scholar
  106. Lin, Y., and Blaschek, H. P., 1984, Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Env. Microbiol. 45 (3):966–973.Google Scholar
  107. Long, S., Jones, D. T., and Woods, D. R., 1983, Sporulation of Clostridium acetobutylicum P262 in a defined medium, Appl. Env. Microbiol. 45(4): 1389–1393.Google Scholar
  108. Long, S., Jones, D. T., and Woods, D. R., 1984a, The relationship between sporulation and solvent production in Clostridium acetobutylicum P262, Biotechnol. Lett. 6 (8):529–534.Google Scholar
  109. Long, S., Jones, D. T., and Woods, D. R., 1984b, Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262, Appl. Microbiol. Biotechnol. 20 (4):256–261.Google Scholar
  110. Lovitt, R. W., Longin, R., and Zeikus, J. G., 1984, Ethanol production by thermophilic bacteria: Physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuncum, Appl. Environ. Microbiol. 48 (1): 171–177.PubMedGoogle Scholar
  111. Maddox, I. S., 1983, Use of silicalite for the adsorption of n-butanol from fermentation liquors, Biotechnol. Lett. 5:89–94.Google Scholar
  112. Maddox, I. S., and Murray, A. E., 1983, Production of n-butanol by fermentation of wood hydrolysate, Biotechnol. Lett. 5 (3): 175–178.Google Scholar
  113. Marchal, R., Rebeller, M., and Vandecasteele, J. P., 1984, Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone-butanol fermentation, Biotechnol. Lett. 6 (8):523–528.Google Scholar
  114. Marchal, R., Blanchet, D., and Vandecasteele, J. P., 1985, Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes, Appl. Microbiol. Biotechnol. 23:92–98.Google Scholar
  115. Marchal, R., Ropars, M., and Vandecasteele, J. P., 1986, Conversion into acetone and butanol of lignocellulosic substrates pretreated by steam explosion, Biotechnol. Lett. 8 (5):365–370.Google Scholar
  116. Marlatt, J. A., and Datta, R., 1986, Acetone-butanol fermentation process development and economic evaluation, Biotechnol. Prog. 2:23–28.PubMedGoogle Scholar
  117. Masion, E., Amine, J., and Marczak, R., 1987, Influence of amino acid supplements on the metabolism of Clostridium acetobutylicum, FEMS Microbiol. Lett. 43:269–274.Google Scholar
  118. Matta-El-Amouri, G., Janati-Idrissi, R., Assobhei, O., Petitdemange, H., and Gay, R., 1985, Mechanism of the acetone formation by Clostridium acetobutylicum, FEMS Microbiol Lett. 30:11–16.Google Scholar
  119. Matta-El-Ammouri, G., Janati-Idrissi, R., Junelles, A.-M., Petitdemange, H., and Gay, R., 1987, Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum, Biochimie 69:109–115.PubMedGoogle Scholar
  120. Mattiasson, B., 1983, Applications of aqueous two-phase systems in biotechnology, Trends Biotechnol. 1 (1): 16–20.Google Scholar
  121. Mattiasson, B., Suominen, M., Andersson, E., Haggstrom, L., Albertsson, P. A., and Hahn-Hagerdal, B., 1982, Solvent production by Clostridium acetobutylicum in aqueous two-phase system, Enzyme Eng. 6:153–155.Google Scholar
  122. McCoy, E., and Fred, B., 1941, The stability of a culture for industrial fermentation, J. Bacterial. 41:90–91.Google Scholar
  123. McCutchan, W. N., and Hickey, R. J., 1954, The butanol-acetone fermentations, Ind. Ferment. 1:347–388.Google Scholar
  124. McNeil, B., and Kristiansen, B., 1986, The acetone butanol fermentation, in: Advances in Applied Microbiology, Vol. 31 (A. Laskin, ed.), Academic Press, New York, pp. 61–92.Google Scholar
  125. Meyer, C. L., Roos, J. W., and Papoutsakis, E. T., 1986, Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 24:159–167.Google Scholar
  126. Monot, F., and Engasser, J. M., 1983a, Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation, Biotechnol. Lett. 5 (4):213–218.Google Scholar
  127. Monot, F., and Engasser, J. M., 1983b, Continuous production of acetone butanol on an optimized synthetic medium, Eur. J. Appl. Microbiol. Biotechnol. 18:246–248.Google Scholar
  128. Monot, F., Martin, J.R., Petitdemange, H., and Gay, R., 1982, Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium, Appl. Env. Microbiol. 44 (6): 1318–1324.Google Scholar
  129. Monot, F., Engasser, J. M., and Petitdemange, H., 1983, Regulation of acetone butanol production in batch and continuous cultures of Clostridium acetobutylicum, Biotechnol. Bioeng. Symp. 13:207–216.Google Scholar
  130. Monot, F., Engasser, J. M., and Petitdemange, H., 1984, Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 19 (6):422–426.Google Scholar
  131. Moreira, A. R., 1983, Acetone-butanol fermentation, in: Organic Chemicals From Biomass (D. L. Wise, ed.), Benjamin/Cummings, Menlo Park, CA, pp. 385–406.Google Scholar
  132. Moreira, A. R., Ulmer, D. C., and Linden, J. C., 1981, Butanol toxicity in the butylic fermentation, Biotechnol. Bioeng. Symp. 11:567–579.Google Scholar
  133. Moreira, A. R., Dale, B. E., and Doremus, M. G., 1982, Utilization of the fermentor off-gases from an acetone-butanol fermentation, Biotechnol. Bioeng. Symp. 12:263–277.Google Scholar
  134. Murray, W. D., and Khan, A. W., 1983a, Ethanol production by a newly isolated anaerobe, Clostridium saccharolyticum: Effects of culture medium and growth conditions, Can. J. Microbiol. 29:342–347.Google Scholar
  135. Murray, W. D., and Khan, A. W., 1983b, Growth requirements of Clostridium saccharolyticum, an ethanologenic anaerobe, Can. J. Microbiol. 29:348–353.Google Scholar
  136. Murray, W. D., Wemyss, K. B., and Khan, A. W., 1983, Increased ethanol production and tolerance by a pyruvate-negative mutant of Clostridium saccharolyticum, Eur. J. Appl. Microbiol. Biotechnol. 18:71–74.Google Scholar
  137. Ng, T. K., and Zeikus, J. G., 1982, Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum, J. Bacteriol. 150 (3): 1391–1399.PubMedGoogle Scholar
  138. Ng, T. K., Weimer, P. J., and Zeikus, J. G., 1977, Cellulolytic and physiological properties of Clostridium thermocellum, Arch. Microbiol. 114:1–7.PubMedGoogle Scholar
  139. Ng, T. K., Ben-Bassat, A., and Zeikus, J. G., 1981, Ethanol production by thermophilic bacteria fermentation of cellulose substrates by co-cultures of Clostridium thermocellum and C. thermohydrosulfuricum, Appl. Env. Microbiol. 42:231–240.Google Scholar
  140. Ounine, K., Petitdemange, H., Raval, G., and Gay, R., 1985, Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum, Appl. Env. Microbiol. 49 (4):874–878.Google Scholar
  141. Palosaari, N. R., and Rogers, P., 1988, Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum, J. Bacteriol. 170: 2971–2976.PubMedGoogle Scholar
  142. Parkkinen, E., 1986, Conversion of starch into ethanol by Clostridium thermohydrosulfuricum, Appl. Microbiol. Biotechnol. 25:213–219.Google Scholar
  143. Patni, N. J., and Alexander, J. K., 1971, Catabolism of fructose and mannitol in Clostridium thermocellum: Presence of phosphoenolpyruvate: Fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: Mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts, J. Bacteriol. 105 (1):226–231.PubMedGoogle Scholar
  144. Petitdemange, E., Caillet, F., Giallo, J., and Gaudin, C., 1984, Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass, Int. J. Syst. Bacteriol. 34 (2): 155–159.Google Scholar
  145. Pierrot, P., Fick, M., and Engasser, J. M., 1986, Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling, Biotechnol. Lett. 8 (4):253–256.Google Scholar
  146. Prescott, S. G., and Dunn, C. G., 1959, The acetone-butanol fermentation, in: Industrial Microbiology, McGraw-Hill, New York, pp. 180–214.Google Scholar
  147. Qureshi, N., and Maddox, I. S., 1987, Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar, Enzyme Microb. Technol. 9:668–671.Google Scholar
  148. Rao, G., and Mutharasan, R., 1987, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes, Appl. Env. Microbiol. 53 (6): 1232–1235.Google Scholar
  149. Reardon, K. F., Scheper, T.-H., and Bailey, J. E., 1987, Metabolic pathway rates and culture fluorescence in batch fermentations of Clostridium acetobutylicum, Biotechnol. Prog. 3:153–167.Google Scholar
  150. Reysenbach, A. L., Ravenscroft, N., Long, S., Jones, D. T., and Woods, D. R., 1986, Characterization, biosynthesis, and regulation of granulose in Clostridium acetobutylicum, Appl. Env. Microbiol. 52 (1): 185–190.Google Scholar
  151. Roffler, S. R., Blanch, H. W., and Wilke, C. R., 1987, Extractive fermentation of acetone and butanol: Process design and economic evaluation, Biotechnol. Prog., 3:131–140.Google Scholar
  152. Roffler, S. R., Blanch, H. W., and Wilke, C. R., 1988, In situ extractive fermentation of acetone and butanol, Biotechnol. Bioeng. 31:135–143.PubMedGoogle Scholar
  153. Rogers, P., 1984, Genetics and biochemistry of Clostridium relevant to development of fermentation processes, in: Advances in Applied Microbiology (A. I. Laskin, ed.), Academic Press, New York, pp. 1–89.Google Scholar
  154. Rogers, P., and Palosaari, N., 1987, Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents, Appl. Env. Microbiol. 53:2761–2766.Google Scholar
  155. Ross, D., 1961, The acetone-butanol fermentation, Prog. Ind. Microbiol. 3:73–85.Google Scholar
  156. Rothstein, D. M., 1986, Clostridium thermosaccharolyticum strain deficient in acetate production, J. Bacteriol. 165 (1):319–320.PubMedGoogle Scholar
  157. Ryden, R., 1958, Development of anaerobic fermentation processes: Acetone-butanol, in: Biochemical Engineering (R. Steel, ed.), Heywood, London, pp. 125–148.Google Scholar
  158. Schink, B., and Zeikus, J. G., 1983, Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate, J. Gen. Microbiol. 129:1149–1158.Google Scholar
  159. Scholote, D., and Gottschalk, G., 1986, Effect of cell recycle on continuous butanol-acetone fermentation with Clostridium acetobutylicum under phosphate limitation, Appl. Microbiol. Biotechnol. 24 (1): 1–6.Google Scholar
  160. Schoutens, G. H., Nieuwenhuizen, M. C. H., and Kossen, N. W. F., 1984, Butanol from whey ultrafiltrate: Batch experiments with Clostridium beyerinckii LMD 27.6, Appl. Microbiol. Biotechnol. 19:203–206.Google Scholar
  161. Schoutens, G. H., Nieuwenhuizen, M. C. H., and Kossen, N. W. F., 1985, Continuous butanol production from whey permeate with immobilized Clostridium beyerinckii LMD 27.6, Appl. Microbiol. Biotechnol. 21:282–286.Google Scholar
  162. Simon, E., 1947, The formation of lactic acid by Clostridium acetobutylicum (Weizman), Arch. Biochem. 13:237–243.PubMedGoogle Scholar
  163. Sioumis, A. A., 1987, Recovery of alcohols: A chemical approach utilizing lactones, TIBTECH 5:215–217.Google Scholar
  164. Spivey, M. J., 1978, The acetone/butanol/ethanol fermentation, Process Biochem. 13 (11):2–5.Google Scholar
  165. Srinivas, S. P., and Mutharasan, R., 1987, Culture fluorescence characteristics and its metabolic significance in batch cultures of Clostridium acetobutylicum, Biotechnol. Lett. 9:139–142.Google Scholar
  166. Stephens, G. M., Holt, R. A., Gottschal, J. C., and Morris, J. G., 1985, Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture, J. Appl. Bacteriol. 59: 597–605.Google Scholar
  167. Taya, M., Ishii, S., and Kobayashi, T., 1985, Monitoring and control for extractive fermentation of Clostridium acetobutylicum, J. Ferment. Technol. 63 (2): 181–187.Google Scholar
  168. Terracciano, J. S., and Kashket, E. R., 1986, Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum, Appl. Env. Microbiol. 52 (1):86–91.Google Scholar
  169. Terracciano, J. S., Schreurs, W.J. A., and Kasket, E. R., 1987, Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum, Appl. Env. Microbiol. 53:782–786.Google Scholar
  170. Turunen, M., Parkkinen, E., Londesborough, J., and Korhola, M., 1987, Distinct forms of lactate dehydrogenase purified from ethanol- and lactate-producing cells of Clostridium thermohydrosulfuricum, J. Gen. Microbiol. 133:2865–2873.Google Scholar
  171. Van der Westhuizen, A., Jones, D. T., and Woods, D. R., 1982, Autolytic activity and butanol tolerance of Clostridium acetobutylicum, Appl. Env. Microbiol. 44 (6): 1277–1282.Google Scholar
  172. Volesky, B., and Szczesny, T., 1983, Bacterial conversion of pentose sugars to acetone and butanol, Adv. Biochem. Eng./Biotechnol. 27:101–117.Google Scholar
  173. Volesky, B., Mulchandani, A., and Williams, J., 1981, Biochemical production of industrial solvents (acetone-butanol-ethanol) from renewable resources, Ann. N.Y. Acad. Sci. 369: 205–218.Google Scholar
  174. Vollherbst-Schneck, K., Sands, J. A., and Montenecourt, B. S., 1984, Effect of butanol on lipid composition and fluiditty of Clostridium acetobutylicum ATCC 824, Appl. Env. Microbiol. 47: 193–194.Google Scholar
  175. Walther, R., Hippe, H., and Gottschalk, G., 1977, Citrate, a specific substrate for the isolation of Clostridium sphenoides, Appl. Env. Microbiol. 33:955–962.Google Scholar
  176. Walton, M. T., and Martin, J. L., 1979, Production of butanol-acetone by fermentation, in: Microbial Technology, Vol. 1 (H. J. Peppier and D. Perlman, eds.), Academic Press, New York, pp. 187–209.Google Scholar
  177. Wayman, M., and Parekh, R., 1987, Production of acetone-butanol by extractive fermentation using dibutylphthalate as extractant, J. Ferment. Technol. 65:295–300.Google Scholar
  178. Welsh, F. W., and Veliky, I. A., 1984, Production of acetone-butanol from acid whey, Biotechnol. Lett. 6 (1):61–64.Google Scholar
  179. Welsh, F. W., Williams, R. E., and Veliky, I. A., 1986, A note on the effect of nitrogen source on growth of and solvent production by Clostridium acetobutylicum, J. Appl. Bacteriol. 61: 413–419.Google Scholar
  180. Welsh, F. W., Williams, R. E., and Veliky, I. A., 1987, Organic and inorganic nitrogen source effects on the metabolism of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 26:369–372.Google Scholar
  181. Wiegel, J., 1980, Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation process, Experientia 36: 1434–1446.Google Scholar
  182. Wiegel, J., Ljungdahl, L. G., and Rawson, J. R., 1979, Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum, J. Bacteriol. 139 (3):800–801.PubMedGoogle Scholar
  183. Williamson, V. M., and Paquin, C. E., 1987, Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis, Mol. Gen. Genet. 209:374–381.PubMedGoogle Scholar
  184. Yarovenko, V. L., 1964, Principles of the continuous alcohol and butanol-acetone fermentation processes, in: Continuous Cultivation of Microorganisms (I. Malek, ed.), Czechoslovakian Academy of Sciences, Prague, pp. 205–217.Google Scholar
  185. Yerushalmi, L., and Volesky, B., 1985, Importance of agitation in acetone-butanol fermentation, Biotechnol. Bioeng. 28:1297–1305.Google Scholar
  186. Yerushalmi, L., Volesky, B., and Szczesny, T., 1985, Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 22:103–107.Google Scholar
  187. Youngleson, J. S., Santangelo, J. D., Jones, D. T., and Woods, D. R., 1988, Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli, Appl. Env. Microbiol 54:676–682.Google Scholar
  188. Yu, E. K. C., and Saddler, J. N., 1983, Enhanced acetone-butanol fermentation by Clostridium acetobutylicum grown on D-xylose in the presence of acetic or butyric acid, FEMS Microbiol. Lett. 18:103–107.Google Scholar
  189. Yu, E. K. C., Deschatelets, L., and Saddler, J. N., 1984, The bioconversion of wood hydrolyzates to butanol and butanediol, Biotechnol. Lett. 6 (5):327–332.Google Scholar
  190. Yu, E. K. C., Chan, M. K. H., and Saddler, J. N., 1985, Butanol production from cellulosic substrates by sequential coculture of Clostridium thermocellum and C. acetobutylicum, Biotechnol. Lett. 7 (7):509–514.Google Scholar
  191. Zappe, H., Jones, D. T., and Woods, D. R., 1986, Cloning and expression of Clostridium acetobutylicum endoglucanase, cellobiase and amino acid biosynthesis genes in Escherichia coli, J. Gen. Microbiol. 132:1367–1372.PubMedGoogle Scholar
  192. Zappe, H., Jones, D. T., and Woods, D. R., 1987, Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli, J. Microbiol. Biotechnol. 27:57–63.Google Scholar
  193. Zeikus, J. G., 1979, Thermophilic bacteria: Ecology, physiology and technology, Enzyme Microb. Technol. 1:243–252.Google Scholar
  194. Zeikus, J. G., 1980, Chemical and fuel production by anaerobic bacteria, Annu. Rev. Microbiol. 34:423–464.PubMedGoogle Scholar
  195. Zeikus, J. G., 1985, Biology of spore-forming anaerobes, in: Biology of Industrial Microorganisms (A. L. Demain and N. A. Solomon, eds.), Benjamin Cummings, Menlo Park, CA, pp. 79–114.Google Scholar
  196. Zeikus, J. G., Ben-Bassat, A., and Hegge, P.W., 1980, Microbiology of methanogenesis in thermal, volcanic environments, J. Bacteriol. 143 (1):432–440.PubMedGoogle Scholar
  197. Zeikus, J. G., Ben-Bassat, A., Ng, T. K., and Lamed, R. J., 1981, Thermophilic ethanol fermentations, in: Trends in the Biology of Fermentations (A. Hollander, ed.), Plenum Press, New York, pp. 441–461.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • David T. Jones
    • 1
  • David R. Woods
    • 1
  1. 1.Microbiology DepartmentUniversity of CapetownCape TownSouth Africa

Personalised recommendations