Homochiral Radioligands for PET: Aspects of Asymmetric Synthesis, Analysis and Behaviour In Vivo

  • Victor W. Pike
  • Susan P. Hume
  • Franklin I. Aigbirhio
  • Farah Shah
  • Sharon Ashworth
  • Marilyn P. Law
  • Julie McCarron
  • Raymond J. Davenport

Abstract

Positron emission tomography (PET) enables strong binding site-radioligand interactions to be studied in vivo. This capability may be exploited to gain new insights into changes in the distribution, density, affinity and occupation of enzymes and neurotransmitter receptors in relation to the progress of disease, or to investigate the action of novel therapeutics with regard to their site(s) of action, effective dose and duration of action. The strong binding site-radioligand interactions tend to be enantioselective (see Lehmann, 1986) and if so demand the use of a homochiral radioligand, usually the more potent enantiomer (the eutomer). The reasons may be summarised as follows:
  1. i)

    to avoid the confusing effects of any differential distribution, metabolism, protein binding or pharmacokinetics in the enantiomers of a racemic radioligand. For reviews of such effects in pharmacology, see Simonyi et al. (1986), Testa (1986) and Walle and Walle (1986).

     
  2. ii)

    to achieve optimal signal-to-noise ratio (e.g. specific/nonspecific radioligand binding) by avoiding contributions to non-specific binding by the less potent enantiomer (the distomer).

     
  3. iii)

    to obtain kinetic data that can be modelled mathematically to provide meaningful quantitative measurements on binding site populations (e.g. binding potential, KD or Bmax values). For relevant pharmacokinetic discussion see Ariëns (1986) and references therein.

     
  4. iv)

    to avoid unnecessary radiation exposure from the distomer.

     

Keywords

Positron Emission Tomography Positron Emission Tomography Study Enantiomeric Excess Chiral HPLC Chiral Auxiliary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affolter, H., Hertel, C., Jaeggi, K., Portenier, M., and Staehelin, M., 1985, (-)-S-[3H]CGP-12177 and its use to determine the rate constants of unlabeled ß-adrenergic antagonists, Proc. Natl Acad. Sci. USA, 82:925.PubMedCrossRefGoogle Scholar
  2. Aigbirhio, F.I., Pike, V.W., Francotte, E., Waters, S.L., Banfield, B., Jaeggi, K.A., and Drake, A., 1992, 5-[1-(2,3-Diaminophenoxy)]-3′-(N-r-butylamino)propan-2′-ol — simplified asymmetric synthesis with CD and chiral HPLC analysis, Tetrahedron: Asymmetry, 3:539.CrossRefGoogle Scholar
  3. Aigbirhio, F.I., Pike, V.W., Francotte, E., Jaeggi, K., and Waters, S.L., 1993, Simplified asymmetric synthesis for S-[carbonyl- 11 C]CGP 12177 production, J. Label. Compd. Radiopharm., 32:159.Google Scholar
  4. Ariëns, E.J., 1986, Chirality in bioactive agents and its pitfalls, TiPs, 7:200.Google Scholar
  5. Baldwin, J. J., Hirschman, R., Lumma P.K., Lumma, W.C., Jr., and Ponticello, G.S., 1977, An approach to peripheral vasodilator-β-adrenergic blocking agents, J. Med. Chem., 20:1024.PubMedCrossRefGoogle Scholar
  6. Berthod, A., Liang Jin, H., Beesley, T.E., Duncan, J.D., and Armstrong, D.W., 1990, Cyclodextrin chiral stationary phases for liquid chromatographic separations of drug stereoisomers, J. Pharmaceut. & Biomed. Analysis, 8:123.CrossRefGoogle Scholar
  7. Boullais, C., Crouzel, C., and Syrota, A., 1985, Synthesis of 4-(3-t-butylamino-2-hydroxypropoxy) benzimidazol-2(11C)-one (CGP 12177), J. Label. Compd. Radiopharm., 23:565.CrossRefGoogle Scholar
  8. Brady, F., Luthra, S.K., Tochon-Danguy, H., Landais, P.G., Waters, S.L., Law, M., Jaeggi, K.A., and Pike, V.W., 1990, Towards a chiral precursor for the automated radiosynthesis of carbon-11 labelled 5-CGP 12177, J. Label. Compd. Radiopharm., 30:251.Google Scholar
  9. Brady, F., Luthra, S.K., Tochon-Danguy, H-J., Steel, C.J., Waters, S.L., Kensett, M.J., Landais, P.G., Shah, F., Jaeggi, K.A., Drake, A., Clark, J.C., and Pike, V.W., 1991, Asymmetric synthesis of a precursor for the automated radiosynthesis of 5-(3’-r-butylamino-2’-hydroxypropoxy)-benzimidazol-2-[11C]one (S-[11C]CGP 12177) as a preferred radioligand for β-adrenergic receptors, Appl. Radiat. Isot., 42:621.CrossRefGoogle Scholar
  10. Camsonne, R., Crouzel, C., Comar, D., Mazière, M., Prenant, C., Sastre, J., Moulin, M.A., and Syrota, A., 1984, Synthesis of N-(11C)methyl, N-(methyl-l propyl), (chloro-2 phenyl)-1 isoquinoline carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors, J. Label. Compd. Ratiopharm., 21:985.CrossRefGoogle Scholar
  11. Charbonneau, P., Syrota, A., Crouzel, C., Valois, J.M., Prenant, C., and Crouzel, C., 1986, Peripheral type benzodiazepine receptors in the living heart characterised by positron emission tomography, Circulation, 73:476.PubMedCrossRefGoogle Scholar
  12. Cremer, J. E., Hume, S.P., Cullen, B.M., Myers, R., Manjil, L.G., Turton, D.R., Luthra, S.K., Bateman, D.M., and Pike, V.W., 1992, The distribution of radioactivity in brains of rats given [N-methyl- 11 C]PK 11195 in vivo after induction of a cortical ischaemic lesion, Nucl. Med. Biol., 19:159.Google Scholar
  13. Dubroeucq, M-C., Renault, C., and Le Fur, G.R, 1983, Nouveau dérivés d’arène et d’hétéroarènecarboxamides, leur procédes de préparation et médicaments les contenant, European Patent No, 0094271.Google Scholar
  14. Hammadi, A., and Crouzel, C., 1990, Stereoselective synthesis of the (R)- and (S)-2-(2-amino-3-nitrophenoxy)-3-(tert-butylamino)-2-propanol from the enantiomeric glycidyl tosylates, Tetrahedron: Asymmetry, 1:579.CrossRefGoogle Scholar
  15. Hammadi, A., and Crouzel, C., 1991, Asymmetric synthesis of (2S)-and (2R)-4-(3-t-butylamino-2-hydroxypropoxy)-benzidazol-2-[11C]-one ((S)-and (R)-[HC]-CGP 12177 from optically active precursors, J. Label. Compd. Radiopharm., 29:681.CrossRefGoogle Scholar
  16. Hudson, A.L., Mallard, N.J., Tyacke, R., and Nutt, D.J., 1992, pH]-RX821002: a highly selective ligand for the identification of α2-adrenoceptors in the rat brain, Molecular Neuropharmacol., 1:219.Google Scholar
  17. Hume, S.P., Lammertsma, A.A., Opacka-Juffry, J., Ahier, R.G., Myers, R., Cremer, J.E., Hudson, A.L., Nutt, D.J., and Pike, V.W., 1992, Quantification of in vivo binding of pH]RX 821002 in rat brain: evaluation as a radioligand for central α2-adrenoceptors, Nucl. Med. Biol., 19:841.Google Scholar
  18. Georges, G., Vercauteren, D.P., Vanderveken, D.J., Horion, R., Evrard G., Fripiat J.G., Andre J-M., and Durant F., Structural and electronic analysis of peripheral benzodiazepine lignads: description of the pharmacophore elements for their receptors, Int. J. Quantum Chem: Quantum Biol. Symp., 1990, 17:1.CrossRefGoogle Scholar
  19. Klunder, J.M., Onami, T., and Sharpless, K.B, 1989, Arenesulfonate derivatives of homochiral glycidol: versatile chiral building blocks for organic synthesis, J. Org. Chem., 54:1295.CrossRefGoogle Scholar
  20. Kuhn, W., 1933, in Stereochemie p. 317, Freudenberg K. (Ed.), F. Deuticke, Liepzig.Google Scholar
  21. Landais, P., and Crouzel C., 1987, A new synthesis of carbon-11 labelled phosgene, Appl. Radiat. Isot., 38:297.CrossRefGoogle Scholar
  22. Langin, D., Lafontan, M., Stillings, M.R., and Paris, H., 1989, [3H]RX821002: a new tool for the identification of α2A-adrenoceptors, Eur. J. Pharmacol., 167:95.PubMedCrossRefGoogle Scholar
  23. Law, M.P., 1993, Demonstration of the suitability of CGP 12177 for in vivo studies of ß-adrenoreceptors, Br. J. Pharmacol., In press.Google Scholar
  24. Law, M.P. and Burgin, J., 1989, Evaluation of CGP-12177 for characterization of beta-adrenergic receptors by PET: in vivo studies in rat, J. Nucl. Med., 30:766.Google Scholar
  25. Lehmann, P.A., 1986, Stereoisomerism and drug action, TiPS, 7:281.Google Scholar
  26. Mason, S.F., 1963, Quart. Rev. Chem. Soc., 17:20.CrossRefGoogle Scholar
  27. McClure, D.E., Arison, B.H., and Baldwin, J.J., 1979, Mode of nucleophilic addition to epichlorhydrin and related species: chiral aryloxymethyloxiranes, J. Am. Chem. Soc., 101:3666.CrossRefGoogle Scholar
  28. Myers, R., Manjil, L.G., Cullen, B.M., Price, G.W., Frackowiak, R.S.J., and Cremer, J.E., 1991, Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion, J. Cerebr. Blood Flow Metab., 11:314.CrossRefGoogle Scholar
  29. Newman, A.H., Lueddens, H.W.M., Skolnick, P., and Rice K.C., 1987, Novel irreversible ligands specific for “peripheral” type benzodiazepine receptors: (±)-, (+)-, and (-)-1-(2-chlorophenyl)-N-(1-methylpropyl)-N-(2-isothiocyanatoethyl)-3-isoquinolinecarboxamide and l-(2-isothiocyanoethyl)-7-chloro-1,3-dihydro-5-(4-chlorophenyl)-2H-1,4-benzodiazepin-2-one, J. Med. Chem., 30:1901.PubMedCrossRefGoogle Scholar
  30. Pike, V.W., Halldin, C., Crouzel, C., Barré, L., Nutt, D.J., Osman, S., Shah, F., Turton, D.R., and Waters S.L., 1993a, Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites — current status, Nucl. Med. Biol, 20:503.PubMedCrossRefGoogle Scholar
  31. Pike, V.W., Hume, S.P., Aigbirhio, F.I., Turton, D.R., and Nutt D.J., 1993b, [11C]RX 821002 as a potential PET radioligand for central α2 adrenoceptors, J. Label. Compd. Radiopharm., 32:495.Google Scholar
  32. Seto, M., Syrota, A., Crouzel, C., Charbonneau, P., Vallois, J.M., Cayla, J., and Boullais, C., 1986, Beta adrenergic receptors in dog heart characterised by 11C-CGP 12177 and PET, J. Nucl Med., 27:949.Google Scholar
  33. Shah, F., Pike, V.W., and Turton, D.R., 1993, Syntheses of homochiral 11C-labelled radioligands for peripheral benzodiazepine binding sites, J. Label Compd. Radiopharm., 32:166.Google Scholar
  34. Simonyi, M., Fitos I., and Visy, J., 1986, Chirality of bioactive agents in protein binding and storage transport processes, TiPS, 7:112.Google Scholar
  35. Staehelin, M., and Hertel, C., 1983, pH]CGP-12177, A β-adrenergic ligand suitable for measuring cell surface receptors, J. Receptor Res., 3:35.Google Scholar
  36. Staehelin, M., Simons P., Jaeggi, K., and Wigger, N., 1983, CGP-12177 A hydrophilic β-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells, J. Biol Chem., 258:3496.PubMedGoogle Scholar
  37. Syrota A., 1988, Receptor bindng studies of the intact heart, In New Concepts in Cardiac Imaging, No 4, Chapter 6, p. 141, Year Book Medical Publishers, Chicago.Google Scholar
  38. Testa, B., 1986, Chiral aspects of drug metabolism, TiPS, 7:60.Google Scholar
  39. Vauquelin, G., De Vos, H., De Backer, J-P., and Ebinger, G., 1990, Identification of α2 adrenergic receptors in human frontal cortex membranes by binding of [3H]RX 821002, the 2-methoxy analog of [3H]idazoxan, Neurochem. Int., 17:537.PubMedCrossRefGoogle Scholar
  40. Walle, T., and Walle, U.K., 1986, Pharmacokinetic parameters obtained with racemates, TiPS, 7:155.Google Scholar
  41. Welbourn, A.P., Chapleo, C.B., Lane, A.C., Myers, P.L., Roach, A.G., Smith, C.F.C., Stillings, M.R., and Tulloch, I.A., 1986, α-Adrenoceptor reagents. 4. Resolution of some potent selective prejunctional α2-adrenoceptor antagonists, J. Med. Chem., 29:2000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Victor W. Pike
    • 1
  • Susan P. Hume
    • 1
  • Franklin I. Aigbirhio
    • 1
  • Farah Shah
    • 1
  • Sharon Ashworth
    • 1
  • Marilyn P. Law
    • 1
  • Julie McCarron
    • 1
  • Raymond J. Davenport
    • 1
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK

Personalised recommendations