The Hammersmith Philosophy for PET Chemistry Automation

  • John C. Clark
  • Keith Dowsett
  • Colin J. Steel
  • David R. Turton

Abstract

Clinical scientific research using PET requires access to a wide variety of radio-pharmaceuticals. We have chosen only to automate the production of those accessible via robust chemical syntheses. Three types of system are in routine use on a weekly scheduled basis. They are for [18F]-2 fluoro-2 deoxy-D-glucose([18F]FDG) production, [11C]-methylations and H2 15O infusions. As most PET Radiopharmaceutical syntheses generally require only control of valves, temperature, time and flow, we have chosen to use industrial programmable logic controllers (PLC’s) with sensing and feedback of temperature and multiport valve position where essential. “Set up” and “run” programmes are assembled in “ladder logic” and stored on an erasable programmable read only memory (EPROM). During the “set up” procedure clean dry reaction vessels, SEP- PAC®s, precursors, reagents, filters and product reception vials are installed. During the “run” sequence the processing proceeds automatically the operator intervenes only to“cut” the preparative HPLC product peak by remote control valve operation. For [HC] — methylations an automated product formulation system is integrated with the HPLC “cut peak” and delivers the product via a membrane filter to the delivery vial. A PLC controlled [18F]FDG unit, incorporating a closed glassy carbon reactor in a one pot system for fluorination and hydrolytic deprotection has been built. Enriched H2 18O is recovered and the product is terminally purified by HPLC.

Keywords

Reaction Vessel Reaction Vial Ammonium Dihydrogen Phosphate Hydriodic Acid Rotary Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camsonne R., Crouzel C., Comar D., Mazière M., Prenant C., Sastre J., Moulin M.A. and Syrota A. (1984) Synthesis of N-[11C]methyl, N-methyl-propyl), (chlor o-2-phenyl)isoquinoline carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors. J. Label. Compd. Radiopharm., 21, 985–991.CrossRefGoogle Scholar
  2. Clark J.C. and Dowsett K. (1992) Automated carbon-11 radiopharmaceutical production. PSI Proceedings 92–01, pp. 207–209. ISSN 1019–6447.Google Scholar
  3. (Proc. IVth Int. Workshop on Targetry & Target Chemistry, PSI, Villigen, Switzerland, 1991). (Abstract).Google Scholar
  4. Clark J.C. and Tochon Danguy (1992) “R2D2”, a bedside [oxygen-15]water infuser. PSI Proceedings 92–01, pp. 234–235. ISSN 1019–6447. (Proc. IVth Int. Workshop on Targetry & Target Chemistry, PSI, Villigen, Switzerland, 1991). (Abstract).Google Scholar
  5. Cremer J., Hume S.P., Cullen B.M., Myers R., Manjil L.G., Turton D.R., Luthra S.K., Bateman D.M. and Pike V.W. (1992) The distribution of radioactivity in brains of rats given [N-methyl-11C]PK 11195 in vivo after induction of cortical ichaemic lesion. Nucl. Med. Biol., 19, 159–166.Google Scholar
  6. Crouzel C., Långström B., Pike V.W. and Coenen H.H. (1987) Recommendation for a practical production of [HC]methyl iodide. Int. J. Appl. Radiat. Isot., 38, 601–603.CrossRefGoogle Scholar
  7. Ehrin E., Gawell L., Högberg T., de Paulis T. and Ström P. (1987) Synthesis of [methoxy-3H]- and [methoxy-HC]-labelled raclopride. Specific dopamine D2 receptor ligands. J. Label. Compd. Radiopharm., 24, 931–940.CrossRefGoogle Scholar
  8. Fowler J.S., MacGregor R.R., Wolf A.P., Arnett C.D., Dewey S.L., Schlyer D., Christman D., Logan J., Smith M., Sach H., Aquilonius S.M., Bjurling P., Halldin C., Hartvig P., Leenders, K.L., Lundqvist H., Oreland L., Stålnacke C-G. and Långström B. (1987). Mapping human brain monoamine oxidase A and B with HC-labelled suicide inactivators and PET. Science, 235, 481–485.PubMedCrossRefGoogle Scholar
  9. Halldin C., Stone-Elander S., Farde L., Ehrin E., Fasth K-J., Långström B. and Sedvall G. (1986) Preparation of HC-labelled SCH 23390 for the in vivo study of dopamine D-l receptors using positron emission tomography. Appl. Radiat. Isot., 37, 1039–1043.CrossRefGoogle Scholar
  10. Hamacher K., Coenen H.H. and Stöcklin G. (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med., 27, 235–238.PubMedGoogle Scholar
  11. Luthra S.K., Turton D.R., Dowsett K., Bateman D.M., Kensett M.J., Waters S.L. and Pike V.W. (1991). Improved and automated “one pot” radiosynthesis of [11C] Diprenorphine and [11C] Buprenorphine. J.Label. Com. Radiopharm., 30, 258–259.Google Scholar
  12. Mazière M., Hantraye P., Prenant C., Sastre J. and Comar D. (1984) Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo[1,5a][1,4]benzodiaze-pine-3-carboxylate (RO 15–1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Appl. Radiat. Isot., 35, 973–976.CrossRefGoogle Scholar
  13. Ulin J., Gee A.D., Malmborg P., Tedroff J. and Långström B. (1989) Synthesis of racemic (+) and (-)-N-[methyl-11C]nomifensine, a ligand for evaluation of monoamine re-uptake sites by use of positron emission tomography. Appl. Radiat. Isot., 40, 171–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John C. Clark
    • 1
  • Keith Dowsett
    • 1
  • Colin J. Steel
    • 1
  • David R. Turton
  1. 1.Medical Research Council Cyclotron UnitHammersmith HospitalEngland

Personalised recommendations