Synthesis of Fluorine-18 Labeled Compounds for Brain Imaging

  • Mark M. Goodman
  • George W. Kabalka
  • Desmond Longford
  • T. Lee Collier
  • Timothy Gotsick

Abstract

The use of radiotracers labeled with the positron-emitting radionuclides carbon-11, nitrogen-13, oxygen-15 and fluorine-18 for studying alterations of physiologic and chemical processes that underlie the onset and progression of brain disorders in conjunction with the medical imaging technique positron emission tomography (PET) has been well documented1,2. The hallmark of PET is that it permits the use of positron emitting isotopes of the elements carbon, nitrogen, oxygen and fluorine (a hydrogen or hydroxyl substitute) that are the building blocks of the biochemicals that regulate and sustain biologic processes. The role positron labeled radiotracers has played in basic research and diagnostic nuclear medicine has experienced a rapid growth over the past decade due primarily to the development of a new generation of medical cyclotrons.3–5 These machines are computer-controlled, compact, self-shielded, moderate energy (11 to 18 MeV) accelerators designed to support either a University based innovative research or a clinical diagnostic program located at moderate sized (600–1000 bed) medical centers. These single or dual particle, negative or positive ion, isochronous accelerators are capable of producing nitrogen-13, fluorine-18, carbon-11 and oxygen-15 in sufficient quantities, 0.2 to 2.0 Ci (Table 1), for the labeling of radiotracers by currently available synthetic methods.

Keywords

Positron Emission Tomography Radiochemical Yield Competitive Binding Study Diagnostic Nuclear Medicine Ecgonine Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Phelps, J.C. Mazziotta, and S.C. Huang, Study of cerebral function with positron computed tomography, J. Cereb. Blood Flow Metab. 2:113–162 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    M.E. Phelps and J.C. Maziotta, Positron emission tomography brain function and biochemistry, Science 228:799–809 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    A.P. Wolf and W.B. Jones, Cyclotrons for biomedical radioisotope production, Radiochim. Acta. 34:1–7 (1983).Google Scholar
  4. 4.
    J.R. Barrio, G. Bida, N. Satyamuithy and et al, A mini cyclotron based technology for the production of positron-emitting labeled radiopharmaceuticals, in: “The Metabolism of the Human Brain Studied with Positron Emission Tomography,” Greitz, et al, eds., Raven Press, New York, pp 113–121 (1986).Google Scholar
  5. 5.
    H.G. Jacobson, Cyclotrons and radiopharmaceuticals in positron emission tomography. Council on scientific affairs. Report of the positron emission tomography panel, JAMA 259:1854–1860 (1988).CrossRefGoogle Scholar
  6. 6.
    M.E. Phelps, S.C. Huang, E.J. Hoffman, C. Selin,and D.E. Kuhl, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyglucose: validation of the method. Ann. Neurol. 6:371–388 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Reivich, A. Alavi, A.P. Wolf, J.S. Fowler, J. Russel, C. Arnett, C.Y. Shiue, H. Atkins, A. Anand, R. Dann, and J.H. Greenberg, Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxy glucose, J. Cereb. Blood Flow Metab. 5:179–192 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    K.J. Kearfott, D.R. Elmaleh, M.M. Goodman, J.A. Correia, N.M. Alpert, R.H. Ackerman, G.L. Brownell, and W.H. Strauss, Comparison of 2-and 3–18F-Fluoro-deoxy-D-glucose for studies of tissue of tissue metabolism, International Journal of Nuclear Biology 1(1): 15–22 (1984).CrossRefGoogle Scholar
  9. 9.
    A. Luxen, N. Satyamurthy, G.T. Bida, and J.R. Barrio, Stereospecific approach to the synthesis of [18F]2- deoxy-2-fluoro-D-mannose, Appl. Radiat. Isot. 37:409 (1986).CrossRefGoogle Scholar
  10. 10.
    K. Hamacher, H.H. Coenen, and G. Stocklin, Efficient stereospecific synthesis of no carrier-added 2-[18F]- fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution, J. Nucl. Med. 7:235–238 (1986).Google Scholar
  11. 11.
    11.J. Engel, D.E. Kuhl, and M.E. Phelps, Patterns of human local cerebral glucose metabolism during epileptic seizures, Science 218(4567):64–66 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    G. DiChiro, R. De Lapaz, B. Smith, et al, J.Cereb. Blood Flow Metab. 1:S11-S-12 (1981).Google Scholar
  13. 13.
    F. Fazekas, A. Alavi, J.B. Chawluk, R.A. Zimmerman, D. Hackney, L. Bilaniuk, M. Rosen, W.M. Alves, H.I. Hurtig, D.G. Jamieson, et al., Comparison of CT, MR and PET in Alzheimer’s dementia and normal aging, J. Nucl. Med. 30(10): 1607–1615 (1989).PubMedGoogle Scholar
  14. 14.
    E.M. Bessell, A.B. Foster, and J.H. Westwood, Biochem. J. 128:199–204 (1972).PubMedGoogle Scholar
  15. 15.
    M.M. Goodman, G.W. Kabalka, and C.P.D. Longford, Synthesis of fluorine labeled 4-fluoro-4-deoxy-D- glucose as a potential brain, heart and tumor imaging agent, in: “Proceedings, Ninth International Symposium on Radiopharmaceutical Chemistry,” Paris, France, 568–569, (April 6–10, 1992).Google Scholar
  16. 16.
    T.G. Bidder, Hexose translocation across the blood-brain interface: configurational aspects, J. Neurochem. 15:867–874 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    W.M. Partridge and W.H. Olendorf, Kinetics of blood-brain barrier transport of hexoses, Biochem. Biophysics Acta. 382:377–392 (1975).CrossRefGoogle Scholar
  18. 18.
    A.L. Betz, J. Gsejtey, and G.W. Goldstein, Hexose transport and phosphorylation by capillaries isolated from rat brain, Am. J. Physiol. 236:C96–C102 (1979).Google Scholar
  19. 19.
    G. Kloster, C. Muller-Platz, and P. Laufer, 3-[11C]-Methyl-D-Glucose, a potential agent for regional cerebral glucose utilization studies: Synthesis, chromatography and tissue distribution studies in mice, J. Labeled Cmpd. Radiopharm. 18:855–863 (1981).CrossRefGoogle Scholar
  20. 20.
    D.J. Brooks, A.A. Beaney, A. Lammerstsma, S. Herold, D.R. Turton, S.K. Luthra, R.S.J. Frackowiak, D.G.T. Thomas, J. Marshall, and T. Jones, Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studied using [11C]3-O-methyl-D-glucose and positron emission tomography, J. Cereb. Blood Flow Metab. 6:230–239 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    DJ. Brooks, J.S.R. Gibbs, S. Herold, D.R. Turton, S.K. Luthra, D.G.T. Thomas, S.R. Bloom, and T. Jones, Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3–0- methyl-D-glucose and positron emission tomography J. Cereb. Blood Flow Metab. 6:240–244 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    T.D. Reisine, J.Z. Fields, H.I. Yamamura, E.D. Bird, E. Spokes, P.S. Schreiner, and S.J. Enna, Neurotransmitter receptor alterations in Parkinson’s disease, Life Science. 21:335–344 (1977).CrossRefGoogle Scholar
  23. 23.
    P. Seeman and Tardive Dyskinesia, Dopamine receptors and neurologic damage to cell membranes, J. Clin. Pyschopharmacol. 8(suppl):35–95 (1988).Google Scholar
  24. 24.
    S.H. Snyder, Dopamine receptors, Neuroleptics and Schizophrenia, Am. J. Psychiatry. 138:460–464 (1981).PubMedGoogle Scholar
  25. 25.
    F.I. Carroll, A.H. Lewin, J.W. Boja, M.J. Kuhar, Cocaine receptor: Biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter, J. Med. Chem. 35:969–981 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    M.M. Goodman, G.W. Kabalka, T.L. Collier, and C.P.D. Longford, Radioiodinated 2ß-carbomethoxy-3ß-(4-chlorophenyl)-8-(3E-and 3Z-iodopropen-2-yl)nortropanes. Synthesis of potential radioligands for mapping cocaine receptor sites by SPECT, J. Nucl. Med. (5)33:890(1992).Google Scholar
  27. 27.
    M.M. Goodman, M.P. Kung, and H.F. Kung, Unpublished results.Google Scholar
  28. 28.
    R.H. Kline, J. Wright, A.J. Eshleman, K.M. Fox, and M.E. Eldefrawi, Syntheseis of 3-carbamoylecogonine methyl ester analogues as inhibitors of cocaine binding and dopamine uptake, J. Med. Chem. 34:702–705 (1991).PubMedCrossRefGoogle Scholar
  29. 29.
    T.L. Collier, M.M. Goodman, G.W. Kabalka, and C.P.D. Longford, Rapid microwave radiofluorination of (lR-2-exo-3-exo)-2ß-carbomethoxy-8-azabicyclo[3.2.1]octyl-3-N-(4’-[18F]fluoro-3’- nitrophenyl)carbamate. A potential PET cocaine receptor imaging agent, J. Nucl. Med. 33(5): 1025 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark M. Goodman
    • 1
    • 2
  • George W. Kabalka
    • 1
  • Desmond Longford
    • 1
  • T. Lee Collier
    • 1
  • Timothy Gotsick
    • 1
  1. 1.Biomedical Imaging CenterUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of RadiologyThe University of Tennessee Medical Center at Knoxville1924 Alcoa HighwayUSA

Personalised recommendations