Abstract

Theophrastusl about 300 BC stated that chick pea (Cicer arietinum) does not reinvigorate the ground as other related plants (legumes) do but “exhausts” it instead. He pointed out also that chick pea destroys weeds.

Keywords

Allelopathic Effect Black Cherry Allelopathic Compound Inhibit Seed Germination Wild Radish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    THEOPHRASTUS. ca 300 BC. Enquiry into Plants and Minor Works on Odours and Weather Signs. (English translation by A. Hort.) 2 Vols. W. Heinemann, London, pp. 1916.Google Scholar
  2. 2.
    PLINIUS SECUNDUS, C. 1 AD. Natural History. (English translation by H. Rackam, W.H.S. Jones, and D.E. Eichholz.) 10 Vols. Harvard University Press, Cambridge, Massachusetts, pp. 1938–1963.Google Scholar
  3. 3.
    MOLISCH, H. 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie. Gustav Fischer, Jena.Google Scholar
  4. 4.
    MULLER, C.H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18: 348–357.CrossRefGoogle Scholar
  5. 5.
    RICE, E.L. 1984. Allelopathy, Second Edition. Academic Press, Orlando, Florida, 400 pp.Google Scholar
  6. 6.
    CURTIS, J.T., G. COTTAM. 1950. Antibiotic and auto-toxic effects in prairie sunflower. Bull. Torrey Bot. Club 77: 187–191.CrossRefGoogle Scholar
  7. 7.
    WILSON, R.E., E.L. RICE. 1968. Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bull. Torrey Bot. Club 95: 432–448.CrossRefGoogle Scholar
  8. 8.
    RASMUSSEN, J.A., E.L. RICE. 1971. Allelopathic effects of Sporobolus pyramidatus on vegetational patterning. Am. Midl. Natur. 86: 309–326.CrossRefGoogle Scholar
  9. 9.
    NEWMAN, E.I., A.D. ROVIRA. 1975. Allelopathy among some British grassland species. J. Ecol. 63: 727–737.CrossRefGoogle Scholar
  10. 10.
    ALSAADAWI, I.S., E.L. RICE. 1982. Allelopathic effects of Polygonum aviculare L. I. Vegetational patterning. J. Chem. Ecol. 8: 993–1009.CrossRefGoogle Scholar
  11. 11.
    ALSAADAWI, I.S., E.L. RICE. 1982. Allelopathic effects of Polygonum aviculare L. II. Isolation, characterization and biological activities of phytotoxins. J. Chem. Ecol. 8: 1011–1023.CrossRefGoogle Scholar
  12. 12.
    ALSAADAWI, I.S., E.L. RICE, T.K.B. KARNS. 1983. Allelopathic effects of Polygonum aviculare L. III. Isolation, characterization, and biological activities of phytotoxins other than phenols. J. Chem. Ecol. 9: 761–774.CrossRefGoogle Scholar
  13. 13.
    LEE, I.K., M. MONSI. 1963. Ecological studies on Pinus densiflora forest 1. Effects of plant substances on the floristic composition of the undergrowth. Bot. Mag. (Tokyo) 76: 400–413.Google Scholar
  14. 14.
    KIL, B.S. 1981. Allelopathic effect of Pinus densiflora on the floristic composition of undergrowth in pine forests. Doctoral Dissertation, Department of Biology, Chung-Ang University, Iri, Korea.Google Scholar
  15. 15.
    MULLER, C.H., W.H. MULLER, B.L. HAINES. 1964. Volatile growth inhibitors produced by shrubs. Science 143: 471–473.CrossRefADSGoogle Scholar
  16. 16.
    MULLER, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93: 332–351.CrossRefGoogle Scholar
  17. 17.
    MULLER, C.H. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 92: 38–45.CrossRefGoogle Scholar
  18. 18.
    FRIEDMAN, J., G. ORSHAN, Y. ZIGER-CFIR. 1977. Suppression of annuals by Artemisia herba-alba in the Negev desert of Israel. J. Ecol. 65: 413–426.Google Scholar
  19. 19.
    COWLES, H.C. 1911. The causes of vegetative cycles. Bot. Gaz. 51: 161–183.CrossRefGoogle Scholar
  20. 20.
    BOOTH, W.E. 1941. Revegetation of abandoned fields in Kansas and Oklahoma. Am. J. Bot. 28: 415–422.CrossRefGoogle Scholar
  21. 21.
    RICE, E.L., W.T. PENFOUND, L.M. ROHRBAUGH. 1960. Seed dispersal and mineral nutrition in succession in abandoned fields in central Oklahoma. Ecology 41: 224–228.CrossRefGoogle Scholar
  22. 22.
    KAPUSTKA, L.A., E.L. RICE. 1976. Acetylene reduction (N2-fixation) in soil and old field succession in central Oklahoma. Soil Biol. Biochem. 8: 497–503.Google Scholar
  23. 23.
    RICE, E.L. 1964. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. I. Ecology 45: 824–837.CrossRefGoogle Scholar
  24. 24.
    RICE, E.L., S.K. PANCHOLY. 1972. Inhibition of nitrification by climax ecosystems. Am. J. Bot. 59: 1033–1040.CrossRefGoogle Scholar
  25. 25.
    RICE, E.L., S.K. PANCHOLY. 1973. Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am. J. Bot. 60: 691–702.CrossRefGoogle Scholar
  26. 26.
    RICE, E.L., S.K. PANCHOLY. 1974. Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Am. J. Bot. 61: 1095–1103.CrossRefGoogle Scholar
  27. 27.
    JACKSON, J.R., R.W. WILLEMSEN. 1976. Allelopathy in the first stages of secondary succession on the piedmont of New Jersey. Am. J. Bot. 63: 1015–1023.CrossRefGoogle Scholar
  28. 28.
    WALTERS, D.T., A.R. GILMORE. 1976. Allelopathic effects of fescue on the growth of sweetgum. J. Chem. Ecol. 2: 469–479.CrossRefGoogle Scholar
  29. 29.
    HORSLEY, S.B. 1977. Allelopathic inhibition of black cherry by fern, grass, goldenrod, and aster. Can. J. Forest Res. 7: 205–216.CrossRefGoogle Scholar
  30. 30.
    TUBBS, C.H. 1973. Allelopathic relationship between yellow birch and sugar maple seedlings. For. Sci. 19: 139–145.Google Scholar
  31. 31.
    JOBIDON, R., J.R. THIBAULT. 1981. Allelopathic effects of balsam poplar on green alder germination. Bull. Torrey Bot. Club 108: 413–418.CrossRefGoogle Scholar
  32. 32.
    JOBIDON, R., J.R. THIBAULT. 1982. Allelopathic growth inhibition of nodulated and unnodulated Alnus crispa seedlings by Populus balsamifera. Am. J. Bot. 69: 1213–1223.CrossRefGoogle Scholar
  33. 33.
    HANDLEY, W.R.C. 1963. Mycorrhizal associations and Calluna heathland afforestation. Bull. Forest Commn. London, No. 36.Google Scholar
  34. 34.
    ROBINSON, R.K. 1972. The production by roots of Calluna vulgaris of a factor inhibitory to growth of some mycorrhizal fungi. J. Ecol. 60: 219–224.CrossRefGoogle Scholar
  35. 35.
    BROWN, R.T., P. MIKOLA. 1974. The influence of fruticose soil lichens upon the mycorrhizae and seedling growth of forest trees. Acta Forest Fenn. 141: 1–22.Google Scholar
  36. 36.
    McCALLA, T.M., F.L. DULEY. 1948. Stubble mulch studies: Effect of sweetclover extract on corn germination. Science 108: 163.CrossRefADSGoogle Scholar
  37. 37.
    McCALLA, T.M., F.L. DULEY. 1949. Stubble mulch studies: III. Influence of soil microorganisms and crop residues on the germination, growth and direction of root growth of corn seedlings. Proc. Soil Sci. Soc. Am. 14: 196–199.CrossRefGoogle Scholar
  38. 38.
    KATZNELSON, J. 1972. Studies in clover soil sickness. I. The phenomenon of soil sickness in berseem and Persian clover. Plant and Soil 36: 379–393.CrossRefGoogle Scholar
  39. 39.
    TAMURA, S., C. CHANG, A. SUZUKI, S. KUMAI. 1967. Isolation and structure of a novel isoflavone derivative in red clover. Agric. Biol. Chem. 31: 1108–1109.CrossRefGoogle Scholar
  40. 40.
    TAMURA, S., C. CHANG, A. SUZUKI, S. KUMAI. 1969. Chemical studies on “clover sickness” Part I. I.olation and structural elucidation of two new ísoflavonoids in red clover. Agric. Biol. Chem. 33: 391–397.CrossRefGoogle Scholar
  41. 41.
    CHANG, C.F., A. SUZUKI, S. KUMAI, S. TAMURA. 1969. Chemical studies on “clover sickness” Part II. Biological functions of isoflavonoids and their related compounds. Agric. Biol. Chem. 33: 398–408.CrossRefGoogle Scholar
  42. 42.
    CHOU, C.H., H.J. LIN. 1976. Autointoxication mechanisms of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2: 353–367.Google Scholar
  43. 43.
    RICE, E.L., C.Y. LIN, C.Y. HUANG. 1981. Effects of decomposing rice straw on growth of and nitrogen fixation by Rhizobium. J. Chem. Ecol. 7: 333–344.CrossRefGoogle Scholar
  44. 44.
    BURGOS-LEON, W., F. GANRY, R. NICOU, J.L. CHOPART, Y. DOMMERGUES. 1980. Etudes et travaux: un cas de fatigue des sols induite par la culture du sorgho. Agron. Trop. 35: 319–334.Google Scholar
  45. 45.
    OLIVER, L.R. 1979. Influence of soybean (Glycine max) planting date on velvetleaf (Abutilon theophrasti) competition. Weed Sci. 27: 183–188.ADSGoogle Scholar
  46. 46.
    STANIFORTH, D.W. 1965. Competitive effects of three foxtail species on soybeans. Weeds 13: 191–193.CrossRefGoogle Scholar
  47. 47.
    HAGOOD, E.S. JR., T.T. BAUMAN, J.L. WILLIAMS JR., M.M. SHREIBER. 1980. Growth analysis of soybeans (Glycine max) in competition with velvetleaf (Abutilon theophrasti). Weed Sci. 28: 729–734.Google Scholar
  48. 48.
    CHANDLER, J.M. 1977. Competition of spurred anoda, velvetleaf, prickly sida, and Venice mallow in cotton. Weed Sci. 25: 151–158.Google Scholar
  49. 49.
    ROBINSON, E.L. 1976. Effect of weed species and placement on seed cotton yields. Weed Sci. 24: 353–355.Google Scholar
  50. 50.
    ELMORE, C.D. 1980. Inhibition of turnip (Brassica rapa) seed germination by velvetleaf (Abutilon theophrasti) seed. Weed Sci. 28: 658–660.Google Scholar
  51. 51.
    COLTON, C.E., F.A. EINHELLIG. 1980. Allelopathic mechanisms of velvetleaf (Abutilon theophrasti Medic., Malvaceae) on soybean. Am. J. Bot. 67: 1407–1413.CrossRefGoogle Scholar
  52. 52.
    BHOWMIK, P.C., J.D. DOLL. 1979. Evaluation of allelopathic effects of selected weed species on corn and soybeans. Proc. North Central Weed Control Conf. 34: 43–45.Google Scholar
  53. 53.
    BHOWMIK, P.C., J.D. DOLL. 1982. Corn and soybean response to allelopathic effects of weed and crop residues. Agron. J. 74: 601–606.CrossRefGoogle Scholar
  54. 54.
    HOLM, L. 1969. Weed problems in developing countries. Weed Sci. 17: 113–118.Google Scholar
  55. 55.
    FRIEDMAN, T., M. HOROWITZ. 1971. Biologically active substances in subterranean parts of purple nutsedge. Weed Sci. 19: 398–401.Google Scholar
  56. 56.
    HOROWITZ, M., T. FRIEDMAN. 1971. Biological activity of subterranean residues of Cynodon dactylon L., Sorghum halepense L., and Cyperus rotundus L. Weed Res. 11: 88–93.CrossRefGoogle Scholar
  57. 57.
    LUCENA, J.M., J. DOLL. 1976. Efectos inhibidores de crecimiento del coquito (Cyperus rotundus L.) sobre sorgo y soya. Revista Comalfi 3: 241–256.Google Scholar
  58. 58.
    PETERS, E.J. 1968. Toxicity of tall fescue to rape and birdsfoot trefoil seeds and seedlings. Crop Sci. 8: 650–653.CrossRefGoogle Scholar
  59. 59.
    FAY, P.K., W.B. DUKE. 1977. An assessment of allelopathic potential in Avena germplasm. Weed Sci. 25: 224–228.Google Scholar
  60. 60.
    LEATHER, G.R. 1983. Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci. 31: 37–42.Google Scholar
  61. 61.
    PUTNAM, A.R., J. DEFRANK. 1979. Use of cover crops to inhibit weeds. Proc. IX Int. Cong. Plant Protection, pp. 580–582.Google Scholar
  62. 62.
    PUTNAM, A.R., J. DEFRANK. 1983. Use of phytotoxic plant residues for selective weed control. Crop Prot. 2: 173–181.CrossRefGoogle Scholar
  63. 63.
    EVENARI, M. 1949. Germination inhibitors. Bot. Rev. 15: 153–194.CrossRefGoogle Scholar
  64. 64.
    PATRICK, Z.A. 1971. Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci. 111: 13–18.CrossRefGoogle Scholar
  65. 65.
    TANG, C.S., A.C. WAISS JR. 1978. Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J. Chem. Ecol. 4: 225–232.CrossRefGoogle Scholar
  66. 66.
    NORSTADT, F.A., T.M. McCALLA. 1963. Phytotoxic substance from a species of Penicillium. Science 140: 410–411.Google Scholar
  67. 67.
    SPOEHR, H.A., J.H.C. SMITH, H.H. STRAIN, H.W. MILNER, G.J. HARDIN. 1949. Fatty Acid Antibacterials From Plants. Pub. 586. Carnegie Institution of Washington, D.C.Google Scholar
  68. 68.
    ROBINSON, T. 1983. The Organic Constituents of Higher Plants. Fifth Edition. Cordus Press, North Amherst, Massachusetts, 353 pp.Google Scholar
  69. 69.
    KOBAYASHI, A., S. MORIMOTO, Y. SHIBATA, K. YAMASHITA, M. NUMATA. 1980. C10-Polyacetylenes as allelopathic substances in dominants in early stages of secondary succession. J. Chem. Ecol. 6: 119–131.CrossRefGoogle Scholar
  70. 70.
    CAMPBELL, G., J.D.H. LAMBERT, T. ARNASON, G.H.N. TOWERS. 1982. Allelopathic properties of aterthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. J. Chem. Ecol. 8: 961–972.CrossRefGoogle Scholar
  71. 71.
    WHITTAKER, R.H., P.P. FEENY. 1971. Allelochemics: chemical interactions between species. Science 171: 757–770.CrossRefADSGoogle Scholar
  72. 72.
    VARGA, M., E. KÖVES. 1959. Phenolic acids as growth and germination inhibitors in dry fruits. Nature 183: 401.CrossRefADSGoogle Scholar
  73. 73.
    OWENS, L.D. 1969. Toxins in plant disease: structure and mode of action. Science 165: 18–25.CrossRefADSGoogle Scholar
  74. 74.
    FENICAL, W. 1975. Halogenation in the Rhodophyta–A review. J. Phycol. 11: 245–259.Google Scholar
  75. 75.
    OWENS, L.D., J.F. THOMPSON, P.V. FENNESSEY. 1972. Dihydrorhizobitoxine, a new ether amino-acid from Rhizobium japonicum. J. Chem. Soc., Chem. Commu. 1972: 715.CrossRefGoogle Scholar
  76. 76.
    RICE, E.L. 1983. Pest Control With Nature’s Chemicals: Allelochemicals and Pheromones in Gardening and Agriculture. University of Oklahoma Press, Norman, Oklahoma.Google Scholar
  77. 77.
    AKAZAWA, T., P. MILJANICH, E.E. CONN. 1960. Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35: 535–538.CrossRefGoogle Scholar
  78. 78.
    ABDUL-WAHAB, A.S., E.L. RICE. 1967. Plant inhibition by Johnson grass and its possible significance in old-field succession. Bull. Torrey Bot. Club 94: 486–497.CrossRefGoogle Scholar
  79. 79.
    PATRICK, Z.A. 1955. The peach replant problem in Ontario. II. Toxic substances from microbial decomposition products of peach root residues. Can. J. Bot. 33: 461–486.CrossRefGoogle Scholar
  80. 80.
    CHOU, C.H., G.R. WALLER. 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6: 643–654.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Elroy L. Rice
    • 1
  1. 1.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA

Personalised recommendations