Biochemical Aspects of Plant-Microbe and Microbe-Microbe Interactions in Soil
Abstract
Beneficial and deleterious microorganisms constantly interact with each other as well as with plant roots in the rhizosphere. It is important to elucidate the nature of microbe-microbe and plant-microbe interactions because plant health often depends on the outcome of such interactions. Plants suffer when their roots are attacked by disease-inducing microbes; they thrive when certain growth promoting microorganisms manage to colonize their roots. Moreover, it is becoming evident that the soil and the rhizosphere flora can be manipulated in ways that favor certain microorganisms which are capable of reducing the activity of potential plant pathogens. This approach to disease control, which is known as biological control, is being actively investigated in many laboratories.
Keywords
Biological Control Plant Pathogen Fusarium Wilt Fluorescent Pseudomonad Plant Pathogenic FungusPreview
Unable to display preview. Download preview PDF.
References
- 1.SCHROTH, M.N., J.G. HANCOCK. 1981. Selected topics in biological control. Annu. Rev. Microbiol. 35: 453–476.CrossRefGoogle Scholar
- 2.COOK, R.J., K.F. BAKER. 1983. The nature and practice of biological control of plant pathogens. Am. Phytopathol. Soc., St. Paul, Minnesota, 539 pp.Google Scholar
- 3.SCHROTH, M.N., J.G. HANCOCK. 1982. Disease suppressive soil and root colonizing bacteria. Science 216: 1376–1381.ADSCrossRefGoogle Scholar
- 4.BAKER, R. 1978. Inoculum potential. In: Plant Disease, An Advanced Treatise. (J.G. Horsfall, E.B. Cowling, eds.), Vol. 2, Academic Press, New York, pp. 137–157.Google Scholar
- 5.PARK, D. 1960. Antagonism — the background of soil fungi. In: The Ecology of Soil Fungi. ( D. Parkinson, J.S. Waid, eds.), Liverpool Univ. Press, pp. 148–155.Google Scholar
- 6.HOMMA, Y., J.W. SITTON, R.J. COOK, K.M. OLD. 1979. Performation and destruction of pigmented hyphae and Gaeumanomycs graminis by vampyrellid amoebae from Pacific Northwest wheat field soils. Phytopathology 69: 1118–1122.CrossRefGoogle Scholar
- 7.ELAD, Y., I. CHET, J. KATAN. 1980. Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70: 119–121.Google Scholar
- 8.ELAD, Y., Y. HADAR, E. HADAR, I. CHET, Y. HENIS. 1981. Biological control of Rhizoctonia solani by Trichoderma harzianum in carnation. Plant Dis. 65: 675–677.CrossRefGoogle Scholar
- 9.ELAD, Y., I. CHET, P. BOYLE, Y. HENIS. 1983. The parasitism of Trichoderma spp. on plant pathogensultrastructural studies and detection by FITC lectins. Phytopathology 73: 85–88.CrossRefGoogle Scholar
- 10.DENNIS, L., J. WEBSTER. 1971. Antagonistic properties of species groups of Trichoderma. III. Hyphal interaction. Trans. Br. Mycol. Soc. 57: 363–369.CrossRefGoogle Scholar
- 11.CHET, I., G.E. HARMAN, R. BAKER. 1981. Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb. Ecol. 7: 29–38.Google Scholar
- 12.SEQUEIRA, L. 1980. Defense triggered by the invader: recognition and compatibility phenomena. In: Plant Disease, An Advanced Treatise. (J.G. Horsfall, E.B. Cowling, eds.), Vol. 5, Academic Press, New York, pp. 179–200.Google Scholar
- 13.ELAD, Y., R. BARAK, I. CHET. 1983. The possible role of lectins in mycoparasitism. J. Bacteriol. 154: 1431–1435.Google Scholar
- 14.HADAR, Y., Y. ELAD, Y. HENIS, I. CHET. 1982. Induction of macroscopic strands formation in Sclerotium rolfsii by Trichoderma harzianum. Israel J. Bot. 30: 156–164.Google Scholar
- 15.HARRIS, J.L., I.L. ROTH. 1980. Aerial strands of Phaeococcus exophialae. Can. J. Bot. 58: 562–567.CrossRefGoogle Scholar
- 16.WATKINSON, S.C. 1979. Growth of rhizomorphs, mycelial strands, coremia and sclerotia. In: Fungal Walls and Hyphal Growth. ( J.H. Burnett, A.P.J. Trinci, eds.), Cambridge Univ. Press, Cambridge, pp. 93–113.Google Scholar
- 17.HENIS, Y., M. INBAR. 1968. Effect of Bacillus subtilis on growth and sclerotium formation by Rhizoctonia solani. Phytopathology 58: 933–938.Google Scholar
- 18.PENTLAND, G.O. 1967. Ethanol produced by Aureobasidium pullulans and its effect on the growth of Armillaria mellea. Can. J. Microbiol. 13: 1631–1635.CrossRefGoogle Scholar
- 19.BUTTON, B., M. EL-KHOURI. 1978. Synnema and rhizomorph production in Sphaerostilbe repens under the influence of other fungi. Trans. Br. Mycol. Soc. 70: 131–136.Google Scholar
- 20.ELAD, Y., R. BARAK, I. CHET, Y. HENIS. 1983. Ultra-structural studies of interaction between Trichoderma spp. and plant pathogenic fungi. Phytopathol. Z. 107: 168–175.CrossRefGoogle Scholar
- 21.HOCH, H.C. 1978. Mycoparasitic relationships. IV. Stephanoma phaeospora parasitic in a species of Fusarium. Mycologia 70: 370–379.CrossRefGoogle Scholar
- 22.MISAGHI, I.J. 1982. Physiology and Biochemistry of Plant-Pathogen Interactions. Plenum Press, New York, 287 pp.CrossRefGoogle Scholar
- 23.BARTNICKI-GARCIA, S., E. LIPPMAN. 1973. In: Handbook of Microbiology. (A.L. Laskin, H.L. Lechevalier, eds.), Vol. V, 2nd Edition, Chemical Rubber Co., Cleveland, Ohio, pp. 229–252.Google Scholar
- 24.MANOCHA, M.S. 1981. Host specificity and mechanism of resistance in a mycoparasitic system. Physiol. Plant Pathol. 18: 257–265.Google Scholar
- 25.TU, J.C. 1980. Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology 70: 670–674.Google Scholar
- 26.HOCH, H.C., M.S. FULLER, 1977. Mycoparasitic relationships. I. Morphological features of interactions between Pythium acanthicum and several fungal hosts. Arch. Microbiol. 11: 207–224.CrossRefGoogle Scholar
- 27.HANSSLER, G.M., M. HERMANNS, H.J. REISENER. 1982. Elektronen-microskopische Beobachtungen der Interaktion zwischen Uredosporen von Puccinía graminis var. tritici and Verticillium lecanii. Phytopathol. Z. 103: 139–148.Google Scholar
- 28.LIFSHITZ, R., M.E. STANGHELLINI, R. BAKER. 1984. A new species of Pythium isolated from soil in Colorado. Mycotaxon. 20: 373–379.Google Scholar
- 29.LIFSHITZ, R., B. SNEH, R. BAKER. 1984. Soil suppressiveness to Pythium ultimum induced by antagonistic Pythium species. Phytopathology 74: 1054–1061.CrossRefGoogle Scholar
- 30.ELAD, Y., R. LIFSHITZ, R. BAKER. 1984. Cell wall hydrolysis of host and non-host fungi during interaction with the mycoparasite, Pythium nunn. Phytopathology 74: 799 (abstract).Google Scholar
- 31.ELAD, Y., I. CHET, Y. HENIS. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28: 719–725.CrossRefGoogle Scholar
- 32.BUMBIERIS, M. 1969. Effect of soil amendments on numbers of soil microorganisms and on the root rot Fusarium wilt complex of peas. Aust. J. Biol. Sci. 22: 1329–1336.Google Scholar
- 33.KLEINSCHUSTER S.J., R. BAKER. 1974. Lectin-detectable differences in carbohydrate-containing surface moieties of macroconidia of Fusarium roseum ‘Avenaceum’ and Fusarium solani. Phytopathology 64: 394–399.CrossRefGoogle Scholar
- 34.ELAD, Y., R. LIFSHITZ, M. DUPLER, R. BAKER. 1984. Scanning electron and light microscopy of interaction between Pythium nunn and several soil fungi. Proc. 49th Annu. Meeting, Mycological Society of America. MSA Newsletter.Google Scholar
- 35.DEACON, J.W. 1976. Studies on Pythium oligandrum, an aggressive parasite on other fungi. Trans. Br. Mycol. Soc. 60: 383–391.CrossRefGoogle Scholar
- 36.DRECHSLER, C. 1946. Several species of Pythium peculiar in their asexual development. Phytopathology 36: 781–864.Google Scholar
- 37.BARNETT, H.L., F.I. BINDER. 1973. The fungal host-parasite relationship. Annu. Rev. Phytopathol. 11: 273–292.CrossRefGoogle Scholar
- 38.KRITZMAN, G., I. CHET, Y. HENIS, A. HUTTERMANN. 1978. The use of the brightener “Calcofluor White M2R New” in the study of fungal growth. Israel J. Bot. 27: 138–146.Google Scholar
- 39.MIRELMAN, D., E. GALUN, N. SHARON, R. LOTAN. 1975. Inhibition of fungal growth by wheat germ agglutinin. Nature 256: 414–416.ADSCrossRefGoogle Scholar
- 40.BARKAI-GOLAN, R., D. MIRELMAN, N. SHARON. 1978. Studies on growth inhibition by lectins of penicillia and aspergilli. Arch. Mikrobiol. 116: 19–24.Google Scholar
- 41.CHET, I., Y. HENIS. 1969. Effect of catechol and disodium EDTA on melanin content of hyphal and sclerotial walls of Sclerotium rolfsii Sacc. and the role of melanin in the susceptibility of these walls to β-(1,3)-glucanase and chitinase. Soil Biol. Biochem. 1: 131–138.Google Scholar
- 42.BAKER, K.F., W.C. SNYDER, eds. 1965. Ecology of soil-borne plant pathogens. Univ. of California Press, Berkeley, 571 pp.Google Scholar
- 43.WRIGHT, J.M. 1956. The production of antibiotics in soil. III. Production of gliotoxin in wheatstraw buried in soil. Annu. Appl. Biol. 44: 461–466.CrossRefGoogle Scholar
- 44.HOWELL, C.R., R.D. STIPANOVIC. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480–482.CrossRefGoogle Scholar
- 45.HOWELL, C.R., R.D. STIPANOVIC. 1980. Suppression of Pythium ultimum — induced damping-off of cotton seedlings by Pseudomonas fluorescense and its antibiotic, Pyoluteorin. Phytopathology 70: 712–715.CrossRefGoogle Scholar
- 46.CHET, I., Y. ELAD. 1983. Biological and integrated control of soilborne plant pathogens: mechanism and application. Proceedings of Gottingen Symposium, in press.Google Scholar
- 47.SIVAN, A., Y. ELAD, I. CHET. 1984. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology 74: 498–501.CrossRefGoogle Scholar
- 48.DENNIS, L., J. WEBSTER. 1971. Antagonistic properties of species-groups of Trichoderma. I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57: 25–39.CrossRefGoogle Scholar
- 49.DENNIS, L., J. WEBSTER. 1971. Antagonistic properties of species-groups of Trichoderma. II. Production of volatile antibiotics. Trans. Br. Mycol. Soc. 57: 41–48.CrossRefGoogle Scholar
- 50.PARK, D. 1963. Evidence for a common fungal growth regulator. Trans. Br. Mycol. Soc. 46: 541–548.CrossRefGoogle Scholar
- 51.KLOEPPER, J.W., M.N. SCHROTH. 1981. Relationships of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020–1024.CrossRefGoogle Scholar
- 52.BAKER, R. 1981. Ecology of the fungus Fusarium: competition. In: Fusarium: Disease, Biology and Taxonomy. ( P.E. Nelson, T.A. Toussoun, R.J. Cook, eds.), Penn State Univ. Press, University Park and London, pp. 245–249.Google Scholar
- 53.BAKER, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6: 263–294.CrossRefGoogle Scholar
- 54.BENSON, D.M., R. BAKER. 1970. Rhizosphere competition in model soil systems. Phytopathology 60: 1058–1061.CrossRefGoogle Scholar
- 55.NEILANDS, J.B. 1973. Microbial iron transplant compounds (siderophores). In Inorganic Biochemistry. (I.G.L. Eickhorn, ed.), Elsevier, Amsterdam, pp. 167–202.Google Scholar
- 56.EMERY, T. 1971. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10: 1483–1488.CrossRefGoogle Scholar
- 57.TEINTZE, M., M.B. HOSSAIN, C.L. BAINES, J. LEONG, D. VAN DER HELM. 1980. Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20: 6446–6457.CrossRefGoogle Scholar
- 58.EMERY, T. 1969. Isolation, characterization and properties of fusarinine, a hydroxamic acid derivative of ornithine. Biochemistry 4: 1410–1417.CrossRefGoogle Scholar
- 59.MISAGHI, I.J., L.J. STOWELL, R.G. GROGAN, L.C. SPEARMAN. 1982. Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology 72: 33–36.CrossRefGoogle Scholar
- 60.KLOEPPER, J.W., J. LEONG, M. TEINTZE, M.N. SCHROTH. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885–886.ADSCrossRefGoogle Scholar
- 61.MISAGHI, I.J., R.G. GROGAN, L.C. SPEARMAN, L.J. STOWELL. 1980. Antifungal activity of a fluorescent pigment produced by fluorescent pseudomonads. Proc. Am. Assn. Adv. Sci., Pacific Division, 61st Annu. Meet., p. 12.Google Scholar
- 62.SNEH, B., M. DUPLER, Y. ELAD, R. BAKER. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium suppressive soil. Phytopathology 74: 1115–1124.CrossRefGoogle Scholar
- 63.ELAD, Y., R. BAKER. 1984. Influence of biomass, microelements and nutrient levels on activity of siderophore producing speudomonads in soil. Phytopathology 74: 806.Google Scholar
- 64.SCHER, F.M., R. BAKER. 1983. Induction of suppressiveness in soil to Fusarium wilt pathogens with Pseudomonas putida and a synthetic iron chelate. Phytopathology 72: 1567–1573.CrossRefGoogle Scholar
- 65.OLSEN, M.W., I.J. MISAGHI. 1982. Interaction among guayule, Verticillium dahliae, and non-pathogenic bacteria. Phytopathology 72: 935 (abstract).Google Scholar
- 66.WELLER, D.M., R.J. COOK. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463–469.CrossRefGoogle Scholar
- 67.OLSEN, M.W., I.J. MISAGHI. 1984. Responses of guayule (Parthenium argantatum) seedlings to plant growth promoting pseudomonads. Plant Soil 77: 97–102.CrossRefGoogle Scholar
- 68.SCHER, F.M., R. BAKER. 1980. Mechanism of biological control in Fusarium suppressive soil. Phytopathology 70: 412–417.CrossRefGoogle Scholar
- 69.SUSLOW, T.V., M.N. SCHROTH. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72: 199–206.CrossRefGoogle Scholar
- 70.BROWN, M.E. 1974. Seed and root bacterization. Annu. Rev. Phytopathol. 12: 181–197.CrossRefGoogle Scholar
- 71.BAKER, R., Y. ELAD, I. CHET. 1984. The controlled experiment in the scientific method with special emphasis on biological control. Phytopathology 74: 1019–1021.CrossRefGoogle Scholar
- 72.LINDSEY, W.L. 1974. Role of chelation in micronutrient availability. In: The Plant Root and Its Environment. ( R.W. Carson, ed.), Univ. Press, Virginia, Charlottesville, pp. 507–524.Google Scholar
- 73.KING, J.V., J.J.R. CAMPBELL, B.A. EAGLES. 1948. Mineral requirements of fluorescein production by Pseudomonas. Can. J. Res. 266: 514–519.CrossRefGoogle Scholar
- 74.POWELL, P.E., P.J. SZANISZALO, G.E. CLINE, C.P.P. REID. 1982. Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5: 653–673.CrossRefGoogle Scholar