Effects of Nerve Growth Factor on the Recovery of Conditioned Taste Aversion in the Insular Cortex Lesioned Rats

  • Federico Bermúdez-Rattoni
  • Martha L. Escobar
  • Ana Luisa Piña
  • Ricardo Tapia
  • Juan Carlos López-García
  • Marcia Hiriart

Abstract

Recent research in our laboratory has focused on the influence of brain grafts on the recovery of learning ability in cortical-lesioned animals. The findings suggest that graft maturation and/or cholinergic activity may play a role in the graft-mediated behavioral recovery following brain lesions.

Keywords

Nerve Growth Factor Taste Aversion Insular Cortex Conditioned Taste Aversion Behavioral Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bermúdez-Rattoni, F., Ferngndez, J., Sanchez, M.A., Aguilar-Roblero, R. and Drucker-Colin, R., 1987, Fetal brain transplants induce recuperation of taste aversion learning. Brain Res., 416: 147–152.Google Scholar
  2. Bermúdez-Rattoni, F., Ferngndez, J. and Escobar, M.L., 1989, Fetal brain transplants induce recovery of morphological and learning deficits of cortical lesioned rats. In: Cell function and disease. L.E. Canedo, L.E. Todd, L. Packer and J. Jaz (Eds.) Plenum Publishing Corporation. Google Scholar
  3. Bermúdez-Rattoni, F., and McGaugh, J.L., 1991, Insular cortex and amygdala lesions differentially affect acquisition of inhibitory avoidance and conditioned taste aversion. Brain Res. 549: 165–170.Google Scholar
  4. Bjorklund, A. and Stenevi, U., 1985, Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7: 279–308.Google Scholar
  5. Braun, J.J., Lasiter, P.S. and Kiefer, S.W., 1982, The gustatory neocortex of the rat. Physiol. Psychol. 10: 13–45.Google Scholar
  6. Dunnett, S.B., Ryan, C.N., Levin, P.D., Reynolds, M. and Bjorklund, A., 1987, Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behay. Neurosc. 101: 489–503.Google Scholar
  7. Escobar, M., Ferngndez-Ruiz, J., Guevara-Aguilar, R. and Bermddez-Rattoni, F., 1989, Fetal brain grafts induce recovery of learning deficits and connectivity in rats with gustatory neocortex lesion. Brain Res., 478: 368–374.Google Scholar
  8. Fernândez-Ruiz, J., Escobar, M.L., Pina, A.L., Diaz-Cintra, S., Cintra McGlone, F.L. and Bermúdez-Rattoni, F., 1991, Time-dependent recovery of taste aversion learning by fetal brain transplants in gustatory neocortex-lesioned rats. Behay. and Neural Biolu 55: 179–193.Google Scholar
  9. Gage, F.H., 1990, NGF-dependent sprouting and regeneration in the hippo-campus, Progress in Brain Res. 83: 357–370.Google Scholar
  10. Gage, F.H. and Bjorklund, A., 1986, Enhanced graft survival in the hippo-campus following selective denervation. Neuroscu 17: 89–98.Google Scholar
  11. Garcia, J., Lasiter, P.S., Bermddez-Rattoni, F. and Deems, D.A., 1985, General theory of aversion learning. Ann. N.Y. Acad. Sciu 443: 8–20.Google Scholar
  12. Grill, H.J. and Norgren, R., 1978, The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats, Brain Res., 143: 263–279.Google Scholar
  13. Hagg, T., Vahlsing, H.L., Manthorpe, M. and Varon, S., 1990, Nerve growth factor infusion into denervated adult rat hippocampal formation promotes its cholinergic reinnervation. J. of Neurosc. 10 (9): 3087–3092.Google Scholar
  14. Hefti, F., David, A., Hartikka, J., 1984, Chronic intraventricular injections of nerve growth factor elevate hippocampal choline-acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Resu 293: 305–311.Google Scholar
  15. Hefti, F., 1986, Nerve growth factor promotes survival of septal cholinergic neurons after transections. J. Neurosci., 6: 2155–2162.Google Scholar
  16. Kesslak, J.P., Brown, L., Steichen, C. and Cotman, C.W., 1986, Adult and embryonic frontal cortex transplants after frontal cortex ablation enhance recovery on a reinforced alternation task. Exp. Neurol. 94: 615–656.Google Scholar
  17. Kiefer, S.W., 1985, Neural mediation of conditioned food aversions. J. Ann. N.Y. Acad. Sci., 443: 100–109.CrossRefGoogle Scholar
  18. Krushel, L.A. and van der Kooy, D., 1988, Visceral cortex: Integration of the mucosal senses with limbic information in the rat agranular insular cortex. The J. of Comp. Neurol. 270: 34–54.Google Scholar
  19. Labbe, R., Firl, A., Mufson, E. and Stein, D., 1983, Fetal brain transplants reduction of cognitive deficit in rats with frontal cortex lesions. Science 221: 470–472.Google Scholar
  20. López-Garcia, J.C., Bermddez-Rattoni, F. and Tapia, R., 1990a, Release of acetylcholine, G-aminobutirate, dopamine acid glutamate, and activity of some related enzymes, in rat gustatory neocortex. Brain Res., 523: 100–104.PubMedCrossRefGoogle Scholar
  21. López-Garcia, J.C., Fernândez-Ruiz, J., Bermddez-Rattoni, F. and Tapia, R., 1990b, Correlation between acetylcholine release and recovery of conditioned taste aversion induced by fetal neocortex grafts. Brain Res., 523: 105–110.Google Scholar
  22. Nachman, M., 1963, Learned aversion to the taste of lithium chloride and generalization to other salts. J. Comp. Physiol. Psychol. 56: 343349.Google Scholar
  23. Norgren, R., Nishijo, H. and Travers, S., 1989. Taste Responses from the Entire Gustatory Apparatus. In: L.H. Schneider, S.J. Cooper and K. A. Halami (Eds.) The Psychobiology of Human Eating Disorders. Ann. N. Y. Acad. Sci., 575: 246–263.Google Scholar
  24. Pallage, V., Toniolo, G., Will, B. and Helti, F., 1986, Long-term effects of nerve growth factor and neural transplants on behavior of rats with medial septal lesions. Brain Res. 386: 197–208.Google Scholar
  25. van der Kooy, D.L., Koda, L.Y., McGinty, J.F., Gerfen, C.R. and Bloor, F.E., 1984, The organization of projections from the cortex to amygdala, and hypothalamus to the nucleus of the solitary tract in the rat. J. Comp. Neurol., 224: 1–24.Google Scholar
  26. Varon, S., Hagg, T., Vahlsing, L. and Manthorpe, M., 1989, Nerve growth factor in vivo actions on cholinergic neurons in the adult rat CNS. In: Cell function and disease. Edited by L.E. Canedo, L.E. Todd, L. Packer and J. Jaz. Plenum Press: 235–248.Google Scholar
  27. Will, B. and Hefti, F., 1985, Behavioral and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions. Behay. Brain Res. 17: 17–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Federico Bermúdez-Rattoni
    • 1
  • Martha L. Escobar
    • 1
  • Ana Luisa Piña
    • 1
  • Ricardo Tapia
    • 1
  • Juan Carlos López-García
    • 1
  • Marcia Hiriart
    • 1
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico, D.F.

Personalised recommendations