In situ X-ray diffraction studies of intercalation batteries

  • C. Levy-Clement
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

Beside their technological usefulness as high energy density batteries, intercalation batteries can be used to study the process of intercalation itself. They can be used in in situ experiments such as in situ X-ray diffractometry. In this technique a specially constructed electrochemical cell is charged or discharged while an X-ray diffraction profile is taken. When high resolution measurements of the voltage of the cell versus the amount of the intercalated species are done simultaneously with the X-ray diffraction experiments, correlation between the two different sets of results permits the physics and chemistry of the intercalation process to be studied.

Keywords

Bragg Peak Propylene Carbonate Intercalation Compound Guest Species Host Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.S. Whittingham, Prog. Solid. State Chem. 12: 41 (1978).CrossRefGoogle Scholar
  2. [2]
    M. Armand, Thèse d’Etat, Grenoble (1978).Google Scholar
  3. [3]
    A. Le Mehaute, Thèse d’Etat, Paris (1979).Google Scholar
  4. [4]
    V.R. McKinnon and R.R. Haering in “Modem Aspects of Electrochemistry”, ed, Plenum, New-York, (vn15): 235 (1983).CrossRefGoogle Scholar
  5. [5]
    A.J. Berlinsky, G.W. Uruh, V.R. McKinnon and R.R. Haering, Solid State Commun., (vn31): 175 (1979).Google Scholar
  6. [6]
    R. Osorio and L.M. Falicov, J. Phys. Chem. Solids, (vn43): 73 (1982).Google Scholar
  7. [7]
    J.R. Dann and V.R. McKinnon, J. of Electrochem. Soc., (vn131): 1823 (1984).Google Scholar
  8. [8]
    A.H. Trompson, Phys. Rev. Lett., (vn40): 1511 (1978).Google Scholar
  9. [9]
    D.C. Dann and R.R. Haering, Solid State Commun., (vn44): 29 (1982).Google Scholar
  10. [10]
    J.R. Dahn and V.R. McKinnon, J. Phys.C Solid State Phys, (vn17): 4231 (1984).Google Scholar
  11. [11]
    R.R. Chianelli, J.C. Scanlon and B.M.L. Raoj, J, Electrochem. Soc. 125: 1563 (1978).CrossRefGoogle Scholar
  12. [12]
    J.R. Dahn, M.A. Py and R.R. Haering, Can, J. Phys, (vn60): 307 (1982).Google Scholar
  13. [13]
    M.A. Py and R.R. Haering, Can, J. Phys., (vn61): 76 (1983).Google Scholar
  14. [14]
    V.R. McKinnon, J.R. Dahn and C. Levy-Clement, Solid State Commun. 50: 101 (1984).ADSCrossRefGoogle Scholar
  15. [15]
    J.R. Dahn, V.R. McKinnon and Coleman, Phys. Rev. B 31: 484 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    W.R. McKinnon (in this volume).Google Scholar
  17. [17]
    W.R. McKinnon and L.S. Selwyn, Physics Rev. B 35: 7275 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    J.M. Tarascon, G.V. Hull, P. Marsh and L. Ter Haar, J.of Solid State Chemistry (1986).Google Scholar
  19. [19]
    V.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 132: 364 (1985).CrossRefGoogle Scholar
  20. [20]
    J.R. Dahn, Thesis of university British Colombia, Vancouver B.C. (1981).Google Scholar
  21. [21]
    J.R. Dahn, V.R. McKinnon and C. Levy-Clement, Solid State Commun. 54: 245 (1985).ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Dahn and V.R. McKinnon, Solid State Ionics (1985).Google Scholar
  23. [23]
    V.R. McKinnon and J.R. Dahn, Solid State Comm. 48: 43 (1983).ADSCrossRefGoogle Scholar
  24. [24]
    C. Levy-Clement, J, Rioux, J.R, Dahn and V.R. McKinnon, Mat. Res. Bull., (vn19): 1629 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • C. Levy-Clement
    • 1
  1. 1.Laboratoire de Physique des SolidesCNRSMeudon, Principal CedexFrance

Personalised recommendations