Species-Dependent Differences in the Metabolic Activation of Polycyclic Aromatic Hydrocarbons in Cells in Culture

  • William M. Baird
  • Teresa A. Smolarek
  • Said M. Sebti
  • Donna Pruess-Schwartz

Abstract

Polycyclic aromatic hydrocarbons are widespread environmental contaminants that require metabolic activation in order to induce biological effects1. One of the most widely studied carcinogenic hydrocarbons is benzo-(a)pyrene (BaP). Most pathways of BaP metabolism result in the production of metabolites that are detoxification products. However, a small proportion of the BaP metabolites are reactive derivatives that bind to DNA in cells and these DNA interactions are involved in the initiation of the cancer induction process1. Although these reactive metabolites cannot be isolated from cells so that their production can be quantitated, it is possible to measure their formation through detection of the DNA adducts they produce. The DNA serves as both a critical target for the “ultimate carcinogenic metabolites” and as a nucleophilic trapping agent for detection and measurement of these reactive electrophiles.

Keywords

Embryo Cell Polycyclic Hydrocarbon Mouse Embryo Cell Brown Bullhead Normal Human Mammary Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Harvey, “Polycyclic Hydrocarbons and Carcinogenesis”, American Chemical Society Symposium Series 283, American Chemical Society, Washington D.C. (1985).Google Scholar
  2. 2.
    R. E. Lehr, S. Kumar, W. Levin, A. W. Wood, R. L. Chang, A. H. Conney, H. Yagi, J. M. Sayer and D. M. Jerina, The bay region theory of polycyclic aromatic hydrocarbon carcinogenesis, in: “Polycyclic Hydrocarbons and Carcinogenesis11, R. G. Harvey, ed., American Chemical Society Symposium Series 283, American Chemical Society, Washington, D.C. (1985).Google Scholar
  3. 3.
    P. Sims, P. L. Grover, A. Swaisland, K. Pal and A. Hewer, Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide, Nature 252:326 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    M. D. Buening, P. G. Wislocki, W. Levin, H. Yagi, D. R. Thakker, H. Akagi, M. Koreeda, D. M. Jerina and A. H. Conney, Tumorigenicity of the optical enantiomers of the diastereomeric benzo(a)pyrene-7,8-diol-9,10-epoxide in newborn mice: Exceptional activity of (+)-7ß,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, Proc. Natl. Acad. Sci. USA 75:5358 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    T. J. Slaga, W. J. Bracken, G. Gleason, W. Levin, H. Yagi, D. M. Jerina and A. H. Conney, Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereometic benzo-(a)pyrene 7,8-diol-9,10-epoxides, Cancer Res. 39:67 (1979).PubMedGoogle Scholar
  6. 6.
    A. Dipple, Polycyclic aromatic hydrocarbon carcinogenesis: An Introduction, in: “Polycyclic Hydrocarbons and Carcinogenesis”, R. G. Harvey, ed., American Chemical Society Symposium Series 283, American Chemical Society, Washington, D.C. (1985).Google Scholar
  7. 7.
    W. M. Baird and D. Pruess-Schwartz, Polycyclic aromatic hydrocarbon-DNA adducts and their analysis: A powerful technique for characterization of pathways of metabolic activation of hydrocarbons to ultimate carcinogenic metabolites, in: “Polycyclic Aromatic Hydrocarbon Carcinogenesis: Structure-Activity Relationships”, B. D. Silverman and S. K. Yang, eds., CRC Press, Boca Raton, FL (1988).Google Scholar
  8. 8.
    S. M. Sebti, D. Pruess-Schwartz and W. M. Baird, Species-and length of exposure-dependent differences in the benzo(a)pyrene: DNA adducts formed in embryo cell cultures from mice, rats and hamsters, Cancer Res. 45:1594 (1985).PubMedGoogle Scholar
  9. 9.
    W. M. Baird and P. Brookes, Isolation of the hydrocarbon-deoxyribonucleoside products from the DNA of mouse embryo cells treated in culture with 7-methylbenz(a)anthracene-3H, Cancer Res. 33:2378 (1973).PubMedGoogle Scholar
  10. 10.
    D. Pruess-Schwartz and W. M. Baird, Benzo(a)pyrene: DNA adduct formation in early-passage Wistar rat embryo cell cultures: Evidence of multiple pathways of activation of benzo(a)pyrene, Cancer Res. 46:545 (1986).PubMedGoogle Scholar
  11. 11.
    D. Pruess-Schwartz, S. M. Sebti, P. T. Gilham and W. M. Baird, Analysis of benzo(a)pyrene: DNA adducts formed in cells in culture by immobilized boronate chromatography, Cancer Res. 44:4104 (1984).PubMedGoogle Scholar
  12. 12.
    A. M. Jeffrey, Polycyclic aromatic hydrocarbon-DNA adducts: Formation, detection and characterization, in: “Polycyclic Hydrocarbons and Carcinogenesis”, R. G. Harvey, ed., American Chemical Society Symposium Series 283, American Chemical Society, Washington, D.C. (1985).Google Scholar
  13. 13.
    T. A. Smolarek, S. L. Morgan, C. G. Moynihan, H. Lee, R. G. Harvey and W. M. Baird, Metabolism and DNA adduct formation of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene in fish cell lines in culture, Carcinogenesis 8:1501 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Pruess-Schwartz, W. M. Baird, A. Nikbakht, B. A. Merrick and J. K. Selkirk, Benzo(a)pyrene: DNA adduct formation in normal human mammary epithelial cell cultures and the human mammary carcinoma T47D cell line, Cancer Res. 46:2697 (1986).PubMedGoogle Scholar
  15. 15.
    I. Plakunov, T. A. Smolarek, D. L. Fischer, J. C. Wiley Jr. and W. M. Baird, Separation by ion-pair high-performance liquid chromatography of the glucuronide, sulfate and glutathione conjugates formed from benzo[a]pyrene in cell cultures from rodents, fish and humans, Carcinogenesis 8:59 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    W. M. Baird and L. Diamond, The nature of benzo(a)pyrene-DNA adducts formed in hamster embryo cells depends on the length of time of exposure to benzo(a)pyrene, Biochem. and Biophy. Res. Comm. 77:162 (1977).CrossRefGoogle Scholar
  17. 17.
    J. A. Milner, M. A. Piggot and A. Dipple, Selective effects of selenium selenite on 7,12-dimethylbenz(a)anthracene-DNA binding in fetal mouse cell cultures, Cancer Res. 45:6347 (1985).PubMedGoogle Scholar
  18. 18.
    K. W. Singletary and J. A. Milner, DNA binding and adduct formation of 7,12-dimethylbenz(a)anthracene by rat mammary epithelial cell aggregates in vitro, Carcinogenesis 7:95 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    T. A. Smolarek, S. L. Morgan, J. Kelley and W. M. Baird, Effects of pretreatment with benzo(a)pyrene on the stereochemical selectivity of metabolic activation of benzo(a)pyrene to DNA-binding metabolites in hamster embryo cell cultures, Chem-Biol Interactions 64:71 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • William M. Baird
    • 1
  • Teresa A. Smolarek
    • 1
  • Said M. Sebti
    • 1
  • Donna Pruess-Schwartz
    • 1
  1. 1.Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations