Chaotic Dynamics in Biological Information Processing: A Heuristic Outline

  • John S. Nicolis
Part of the NATO ASI Series book series (NSSA, volume 138)

Abstract

A given (but otherwise random) environmental time series impinging on the input of a certain biological processor passes through with over-whelming probability undetected. A very small percentage of environmental stimuli, however, are “captured” by the processor’s non-linear dissipative operator, as initial conditions, that is as solutions of the processor’s dissipative dynamics. The processor in such cases is instrumental in compressing or abstracting those stimuli, thereby making the external world collapse from a previous regime of a “pure state” of suspended animation on to a set of stable eigenfunctions or “categories” — chaotic strange attractors. The charateristics of this cognitive set depend on the operator involved and the hierarchical level where the abstraction takes place. In this paper we model the physics of such a cognitive process and the role that the thalamocortical pacemaker of the (human) brain plays in both stimulating the individual attractors and permutating them on a time division multiplexing basis. A synthesis of the Markovian processes taking place within each individual attractor-memory and the Markovian or Semi-Markovian process involving the intermittent jumping among the different attractors-memories is discussed.

Keywords

Strange Attractor Oscillatory Activity Basin Boundary Division Point Suspended Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.T. Arecchi and A. Califano, Phys. Lett. 101A: 443–446 (1984).CrossRefGoogle Scholar
  2. [2]
    F.T. Arecchi, R. Badii and A. Politi, Phys. Rev. A32: 402–408 (1985).CrossRefGoogle Scholar
  3. [3]
    F.T. Arecchi, “Noise-induced trapping at the boundary between two attractors: a source of 1/f spectra in nonlinear dynamics”, preprint (1986).Google Scholar
  4. [4]
    B. Pompe, J. Kruscha and R.W. Leven, Z. Naturforsch. 41a: 801–808 (1986).Google Scholar
  5. [5]
    E.W. Montroll and M.F. Shlesinger, Proc. Natl. Acad. Sci. USA 79: 3380–3383 (1982).CrossRefGoogle Scholar
  6. [6]
    A. Babloyantz and C. Nicolis, U.L.B., preprint (1985).Google Scholar
  7. [7]
    A. Babloyantz, in “Dimensions and Entropies in chaotic systems”, G. Mayer-Kress, ed., Springer-Verlag, 241–245 (1986).Google Scholar
  8. [8]
    G. Nicolis and I. Prigogine, Proc. Natl. Ac. Sci. U.S.A. 78: 654–633 (1981).Google Scholar
  9. [9]
    J.S. Nicolis, Kybernetes 11: 123–132 (1982).CrossRefGoogle Scholar
  10. [10]
    J.S. Nicolis, Kybernetes 11: 269–274 (1982).CrossRefGoogle Scholar
  11. [11]
    D. Gikas and J.S. Nicolis, Z. Phys. B - Condensed Matter 47: 279284 (1982).Google Scholar
  12. [12]
    J.S. Nicolis, G. Mayer-Kress and G. Haubs, Z. Naturforsch. 38a: 1157–1169 (1983).Google Scholar
  13. [13]
    J.S. Nicolis, J. Franklin Institute 317: 289–307 (1984).CrossRefGoogle Scholar
  14. [14]
    J.S. Nicolis, Kybernetes 14: 167–173 (1985).CrossRefGoogle Scholar
  15. [15]
    J.S. Nicolis and I. Tsuda, Bull. Math. Biology 47 (3): 343–365 (1985).Google Scholar
  16. [16]
    J.S. Nicolis, “Dynamics of hierarchical systems”, Vol. 25, Synergetics, Springer-Verlag (1986).Google Scholar
  17. [17]
    J.S. Nicolis, Rep. on Progress in Physics 49 (10), 1109–1196 (1986).CrossRefGoogle Scholar
  18. [18]
    J.S. Nicolis, J. Milias-Argitis and C. Carabalis, Kybernetes 12: 9–20 (1983).CrossRefGoogle Scholar
  19. [19]
    J.S. Nicolis, E.N. Protonotarios and M. Theologou, Int. J. Man-Machine Studies 10: 343–366 (1978).CrossRefGoogle Scholar
  20. [20]
    J.S. Nicolis and E.N. Protonotarios, Int. J. Bio-Medical Computing 10: 417–447 (1979).CrossRefGoogle Scholar
  21. [21]
    John Maynard Smith, “Evolution and the theory of Games”, Cambridge Univ. Press (1982).Google Scholar
  22. [22]
    P.W. Anderson, Science 177: 393 (1972).PubMedCrossRefGoogle Scholar
  23. [23]
    L. Glass and R. Perez, Nature 246: 360–362 (1973).PubMedCrossRefGoogle Scholar
  24. [24]
    C. Grebogi, E. Ott and J. Yorke, Phys. Rev. Lett. 50: 935–938 (1983a).CrossRefGoogle Scholar
  25. [25]
    C. Grebogi, S. McDonald, E. Ott and J. Yorke, Phys. Lett. 99A: (1983b).Google Scholar
  26. [26]
    G. Chaitin, Sci. Am. May: 47 (1975).Google Scholar
  27. [27]
    J.S. Nicolis and M. Benrubi, J. Theoret. Biol. 59: 77–96 (1976).CrossRefGoogle Scholar
  28. [28]
    S.W. McDonald, C. Grebogi, E. Ott and J.A. Yorke, Physica 17D: 125 (1985).Google Scholar
  29. [29]
    J.D. Farmer, J. Crutchfield, H. Froeling, N. Packard and R. Shaw, in “Non-linear Dynamics”, R. Heileman, ed., Ann. of N.Y. Acad. of Sci. 357: 453–472 (1980).Google Scholar
  30. [30]
    S.P. Layne, G. Mayer-Kress and J. Holzfuss, in “Dimensions and entropies in chaotic systems”, G. Mayer-Kress, ed., Springer-Verlag, 246–256 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John S. Nicolis
    • 1
  1. 1.Department of Electrical EngineeringUniversity of PatrasGreece

Personalised recommendations