The Cerebral Cortex of Reptiles

  • Philip S. Ulinski
Part of the Cerebral Cortex book series (CECO, volume 8A)

Abstract

Reptiles and mammals are the two groups of vertebrates with well-developed cerebral cortices. Ray-finned fishes have forebrains that develop by an eversion of the rostral neural tube that reduces the roof of the telencephalon to a thin membrane (Nieuwenhuys, 1982; Northcutt and Davis, 1983). They have olfactory cortices on the ventrolateral walls of their cerebral hemispheres (e.g., Braford and Northcutt, 1974), but the eversion process seemingly precludes the formation of a cortical roof to the telencephalon. Cartilaginous fishes (such as sharks), fleshy-finned fishes (lungfishes and coelacanths), amphibians, reptiles, birds, and mammals all have forebrains that develop via a fundamentally different process. This involves an evagination of the rostral neural tube resulting in paired lateral ventricles, interventricular foramina, and a neuronal roof to the telencephalon that can form an extensive cerebral cortex. However, the telencephalic roof of sharks forms a solid mass of neurons lacking the lamination usually associated with the cerebral cortex (Smeets et al., 1983). Although amphibians (Northcutt and Kicliter, 1980) and lungfishes (Northcutt, 1986) have laminated cortices, they show little migration of neurons away from the ependyma. Birds have a small cerebral cortex, ostensibly resulting from a secondary reduction of the reptilian pattern (Benowitz, 1980). It is only in reptiles and mammals that the telencephalic roof develops into extensive and multilayered cortices.

Keywords

Olfactory Bulb Optic Tectum Lateral Cortex Main Olfactory Bulb Medial Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns Kappers, C. U., 1921, Vergleichende Anatomie des Nervensystems, Bohn, Haarlem.Google Scholar
  2. Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, reprinted 1967, Hafner, New York.Google Scholar
  3. Armstrong, J. A., Gamble, H. J., Goldby, F., 1953, Observations on the olfactory apparatus and telencephalon of Anolis, a microsmatic lizard, J. Anat. 87:288–307.PubMedGoogle Scholar
  4. Balaban, C. D., 1977, Olfactory projections in emydid turtles (Pseudemys scripta elegans and Graptemys pseudogeographica), Am. Zool. 17:887.Google Scholar
  5. Balaban, C. D., 1978, Structure of the pallial thickening in turtles (Pseudemys scripta elegans), Anat. Rec. 190:330–331.Google Scholar
  6. Balaban, C. D., 1979, Organization of thalamic projections to anterior dorsal ventricular ridge in two species of turtles (Pseudemys scripta elegans and Chrysemys picta belli), Ph.D. dissertation, University of Chicago.Google Scholar
  7. Balaban, C. D., and Ulinski, P. S., 1981a, Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles—I. Projections of thalamic nuclei, J. Comp. Neurol. 200:95–130.PubMedCrossRefGoogle Scholar
  8. Balaban, C. D., and Ulinski, P. S., 1981b, Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles—II. Properties of the rotundal-dorsal map, J. Comp. Neurol. 200:131–150.PubMedCrossRefGoogle Scholar
  9. Bass, A. H., and Northcutt, R. G., 1981a, Retinal recipient nuclei in the painted turtle, Chrysemys picta: An autoradiographic and HRP study, J. Comp. Neurol. 199:97–112.PubMedCrossRefGoogle Scholar
  10. Bass, A. H., and Northcutt, R. G., 1981b, Primary retinal targets in the Atlantic loggerhead sea turtle, Caretta caretta, Cell Tissue Res. 218:253–264.PubMedCrossRefGoogle Scholar
  11. Bass, A. H., Pritz, M. B., and Northcutt, R. G., 1973, Effects of telencephalic and tectal ablations on visual behavior in the side-necked turtle, Podocnemis unifils, Brain Res. 55:455–460.PubMedCrossRefGoogle Scholar
  12. Bass, A. H., Andry, M. L., and Northcutt, R. G., 1983, Visual activity in the telencephalon of the painted turtle, Chrysemys picta, Brain Res. 263:201–210.PubMedCrossRefGoogle Scholar
  13. Baumgarten, H. G., and Braak, H., 1968, Catecholamine in Gehirn der Eidechse (Lacerta viridis and Lacerta muralis), Z. Zeilforsch. 86:574–608.CrossRefGoogle Scholar
  14. Baylor, D. A., and Fettiplace, R., 1976, Transmission of signals from photoreceptors to ganglion cells in the eye of the turtle, Cold Spring Harbor Symp. Quant. Biol. 40:529–536.PubMedCrossRefGoogle Scholar
  15. Bear, M. F., and Ebner, F. F., 1983, Somatostatin-like immunoreactivity in the forebrain of Pseudemys turtles, Neuroscience 2:297–307.CrossRefGoogle Scholar
  16. Beckers, H. J. A., Platel, R. and Nieuwenhuys, R., 1971/1972, Les aires corticales de quelques reptiles squamates Lacerta viridis, Chamaeleo lateralis, Monopeltis guentheri, Acta Morphol. Neerl. Scand. 9:337–364.Google Scholar
  17. Belekhova, M. G., 1979, Neurophysiology of the forebrain, in: Biology of the Reptilia, Volume 10 (C. G. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 287–359.Google Scholar
  18. Belekhova, M. V., Kosareva, A. A., Vaselkin, N. P., and Ermakova, T. V., 1979, Telencephalic afferent connections in the turtle Emys orbicularis: A peroxidase study, J. Evol. Biochem. Physiol. 15:97–103.Google Scholar
  19. Bennett, A. F., and Dawson, W. R., 1976, Metabolism, in: Biology of the Reptilia, Volume 5 (C. Gans and W. R. Dawson, eds.), Academic Press, New York, pp. 127–223.Google Scholar
  20. Benowitz, L., 1980, Functional organization of the avian telencephalon, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 389–421.CrossRefGoogle Scholar
  21. Berbel, P. J., Martinez-Guijarro, F. J., and Lopez-Garcia, C., 1987, Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pituysensis: A Golgi study, J. Morphol. 194:275–286.CrossRefGoogle Scholar
  22. Berquist, H., and Kallen, B., 1954, Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates, J. Comp. Neurol. 100:627–659.CrossRefGoogle Scholar
  23. Berson, D. M., and Hartline, P. H., 1988, A tecto-rotundal-telencephalic pathway in the rattlesnake: Evidence for a forebrain representation of the infrared sense, J. Neurosci. 8:1074–1088.PubMedGoogle Scholar
  24. Blanton, M., and Kriegstein, A., 1987, Development of cortical inhibition: An in vitro HRP and GABA-immunocytochemical study in turtle, Neurosci. Abstr. 13:953.Google Scholar
  25. Blanton, M. G., Shen, J. M., and Kriegstein, A. R., 1986, Actions of acetylcholine in turtle dorsal cortex, Neurosci. Abstr. 12:573.Google Scholar
  26. Blanton, M. G., Shen, J. M., and Kriegstein, A. R., 1987, Evidence for the inhibitory neurotransmitter 7-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex, J. Comp. Neurol. 259:277–297.PubMedCrossRefGoogle Scholar
  27. Boiko, V. P., 1980, Responses to visual stimuli in thalamic neurons of the turtle Emys orbicularis, Neurosci. Behav. Physiol. 10:183–188.PubMedCrossRefGoogle Scholar
  28. Braak, H., Baumgarten, H. G., and Falck, B., 1968, 5-Hydroxytryptamine in Gerhirn der Eidechse (Lacerta viridis and Lacerta muralis), Z. Zeilforsch. 90:161–185.CrossRefGoogle Scholar
  29. Braford, M. R., Jr., and Northcutt, R. G., 1974, Olfactory bulb projections in the bichir, Polypterus, J. Comp. Neurol. 156:165–178.PubMedCrossRefGoogle Scholar
  30. Brauth, S. E., 1984, Enkephalin-like immunoreactivity within the telencephalon of the reptile Caiman crocodilus, Neuroscience 11:345–358.PubMedCrossRefGoogle Scholar
  31. Brauth, S. E., 1988, Catecholamine neurons in the brainstem of the reptile Caiman crocodilus, J. Comp. Neurol 270:313–326.PubMedCrossRefGoogle Scholar
  32. Brauth, S. E., Reiner, A., Kitt, C. A., and Karten, H. J., 1983, The substance P-containing striatotegmental path in reptiles: An immunohistochemical study, J. Comp. Neurol. 219:305–327.PubMedCrossRefGoogle Scholar
  33. Bruce, L. L., and Butler, A. B., 1984a, Telencephalic connections in lizards. I. Projections to cortex, J. Comp. Neurol 229:585–601.PubMedCrossRefGoogle Scholar
  34. Bruce, L. L., and Butler, A. B., 1984b, Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge, J. Comp. Neurol. 229:602–616.PubMedCrossRefGoogle Scholar
  35. Butler, A. B., 1976, Telencephalon of the lizard Gekko gekko (Linnaeus): Some connections of the cortex and dorsal ventricular ridge, Brain Behav. Evol. 13:396–417.PubMedCrossRefGoogle Scholar
  36. Butler, A. B., 1978, Forebrain connections in lizards and the evolution of sensory systems, in: Behavior and Neurology of Lizards (N. Greenberg and P. D. Maclean, eds.), NIMH, Washington, D.C., pp. 65–78.Google Scholar
  37. Butler, A. B., 1980, Cytoarchitectonic and connectional organization of the lacertilian telencephalon with comments on vertebrate forebrain evolution, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 297–329.CrossRefGoogle Scholar
  38. Butler, A. B., and Northcutt, R. G., 1973, Architectonic studies of the diencephalon of Iguana iguana (Linnaeus), J. Comp. Neurol 149:439–462.PubMedCrossRefGoogle Scholar
  39. Cairney, J., 1926, A general survey of the forebrain of Sphenodon punctatum, J. Comp. Neurol. 42:255–348.CrossRefGoogle Scholar
  40. Carey, J. H., 1967, The nuclear pattern of the telencephalon of the black snake, Coluber constrictor constrictor, in: Evolution of the Forebrain (R. Hassler and H. Stephen, eds.), Plenum Press, New York, pp. 73–80.Google Scholar
  41. Carroll, R. L., 1969, Origin of reptiles, in: Biology of the Reptilia, Volume 1 (C. Gans, A. Bellairs, and T. S. Parsons, eds.), Academic Press, New York, pp. 1–44.Google Scholar
  42. Carroll, R. L., 1987, Vertebrate Paleontology and Evolution, Freeman, San Francisco.Google Scholar
  43. Clark, J. M., and Ulinski, P. S., 1984, A Golgi study of anterior dorsal ventricular ridge in the alligator, Alligator mississippiensis, J. Morphol. 179:153–174.CrossRefGoogle Scholar
  44. Connors, B. W., and Kriegstein, A. R., 1986, Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons, J. Neurosci. 6:164–177.PubMedGoogle Scholar
  45. Connors, B. W., and Ransom, B. R., 1982, Electrophysiological studies on ependymal cells of turtle cortex, Neurosci. Abstr. 8:237.Google Scholar
  46. Conty, P., 1953, Richerche sulla gliorchitetonica dei reitili (cheloni, sauri e ofidi), Arch. Ital. Anal. Embriol. 58:295–320.Google Scholar
  47. Cosans, C., and Ulinski, P. S., 1990, Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections, J. Comp. Neurol. 295:548–558.CrossRefGoogle Scholar
  48. Cranny, J., and Powers, A. S., 1983, The effects of core nucleus and cortical lesions in turtles on reversal and dimensional shifting, Physiol. Psychol. 11:103–111.Google Scholar
  49. Crawford, A. C., and Fettiplace, R., 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol. (London) 306:79–125.Google Scholar
  50. Crawford, A. C., and Fettiplace, R., 1981a, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol. (London) 312:377–412.Google Scholar
  51. Crawford, A. C., and Fettiplace, R., 1981b, Non-linearities in the responses of turtle hair cells, J. Physiol. (London) 315:317–338.Google Scholar
  52. Crosby, E. C., 1917, The forebrain of Alligator mississippiensis, J. Comp. Neurol. 27:325–403.CrossRefGoogle Scholar
  53. Crosby, E. C., and Showers, M. J., 1969, Comparative anatomy of the preoptic and hypothalamic areas, in: The Hypothalamus (W. Haymaker, E. Anderson, and W. J. H. Nauta, eds.), Thomas, Springfield, Ill., pp. 61–135.Google Scholar
  54. Cruce, J. A. F., 1974, A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus, J. Comp. Neurol. 153:215–238.PubMedCrossRefGoogle Scholar
  55. Cruce, W. L. R., and Nieuwenhuys, R., 1974, The cell masses in the brain stem of the turtle Testudo hermanni: A topographical and topological analysis, J. Comp. Neurol. 156:277–306.PubMedCrossRefGoogle Scholar
  56. Curwen, A. O., 1937, The telencephalon of Tupinambis nigropunctatus. I. Medial and cortical areas, J. Comp. Neurol. 66:375–404.CrossRefGoogle Scholar
  57. Dacey, D. M., and Ulinski, P. S., 1983, Nucleus rotundus in snake, Thamnophis sirtalis: An analysis of a nonretinotopic projection, J. Comp. Neurol. 216:175–191.PubMedCrossRefGoogle Scholar
  58. Dacey, D. M., and Ulinski, P. S., 1986a, Optic tectum in the eastern garter snake, Thamnophis sirtalis: I. Morphology of efferent cells, J. Comp. Neurol. 245:1–28.PubMedCrossRefGoogle Scholar
  59. Dacey, D. M., and Ulinski, P. S., 1986b, Optic tectum of the eastern garter snake, Thamnophis sirtalis: V. Morphology of brainstem afferents and general discussion, J. Comp Neurol. 245:423–453.PubMedCrossRefGoogle Scholar
  60. Davila, J. C., Guirado, S., De la Calle, A., and Marin-Giron, F., 1985, Electron microscopy of the medial cortex in the lizard Psammodromus algirus, J. Morphol. 185:327–338.CrossRefGoogle Scholar
  61. Davila, J. C., Guirado, S., De la Calle, A., and Marin-Giron, F., 1986, Ultrastructure of the dorsal cortex of the lizard Psammodromus algirus, J. Hirnforsch. 27:295–304.PubMedGoogle Scholar
  62. Davydova, T. V., and Goncharova, N. V., 1979, Comparative characterization of the basic forebrain cortical zones in Emys orbicularis (Linnaeus) and Testudo horsfieldi (Gray), J. Hirnforsch. 20:245–262.PubMedGoogle Scholar
  63. Davydova, T. V., and Smirnov, G. D., 1969, Neuronal organization of the cortical plate in the tortoise cerebral hemispheres, H. Hirnforsch. 11:333–346.Google Scholar
  64. de Lange, S. J., 1911, Das Vorderhirn der Reptilien, Folia Neurobiol. 5:548–597.Google Scholar
  65. Desan, P. H., 1984, The organization of the cerebral cortex of the pond turtle, Pseudemys scripta elegans, Ph.D. dissertation, Harvard University.Google Scholar
  66. Distel, H., and Ebbesson, S. O. E., 1981, Habenular projections in the monitor lizard (Varanus benegalensus), Exp. Brain Res. 43:324–329.PubMedGoogle Scholar
  67. du Lac, S., and Dacey, D. M., 1981, Relation of the retina and optic tectum to the lateral geniculate complex in garter snake (Thamnophis sirtalis), Neurosci. Abstr. 7:460.Google Scholar
  68. Dunser, K. R., Maxwell, J. H., and Granda, A. M., 1981, Visual properties of cells in anterior dorsal ventricular ridge of turtle, Neurosci, Lett. 25:281–284.CrossRefGoogle Scholar
  69. Durward, A., 1930, The cell masses in the forebrain of Sphenodon punctatum, J. Anat. 65:8–44.PubMedGoogle Scholar
  70. Ebbesson, S. O. E., 1980, The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity, Cell Tissue Res. 213:179–212.PubMedGoogle Scholar
  71. Ebbesson, S. O. E., and Voneida, T. J., 1969, The cytoarchitecture of the pallium in the tegu lizard, Brain Behav. Evol. 2:431–466.CrossRefGoogle Scholar
  72. Ebner, F. F., and Colonnier, M., 1975, Synaptic patterns in the visual cortex of turtles: An electron microscopic study, J. Comp. Neurol. 160:51–80.PubMedCrossRefGoogle Scholar
  73. Ebner, F. F., and Colonnier, M., 1978, A quantitative study of synaptic patterns in turtle visual cortex, J. Comp. Neurol 179:263–276.PubMedCrossRefGoogle Scholar
  74. Elprana, D., Wouterlood, F. G., and Alones, V. E., 1980, A corticotectal projection in the lizard Agama agama, Neurosci. Lett. 18:251–256.PubMedCrossRefGoogle Scholar
  75. Flannigan, W. F., Jr., 1974a, Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana, Brain Behav. Evol. 8:401–436.CrossRefGoogle Scholar
  76. Flannigan, W. F., Jr., 1974b, Sleep and wakefulness in chelonian reptiles. II. The redfooted tortoise, Geochelone carbonaria, Arch. Ital. Biol. 112:253–277.Google Scholar
  77. Flannigan, W. F., Jr., Wilcox, R. H., and Rechtschaffen, A., 1973, The EEG and behavioral continuum of the crocodilian, Caiman sclerops, Electroencephalogr. Clin. Neurophysiol. 34:521–538.CrossRefGoogle Scholar
  78. Flannigan, W. F., Jr., Knight, C. P., Hartse, K. M., and Rechtschaffen, A., 1974, Sleep and wakefulness in chelonian reptiles. I. The box turtle, Terrapene Carolina, Arch. Ital. Biol. 112:227–252.Google Scholar
  79. Franzoni, M. F., and Fasolo, A., 1982, The hypothalamus of Lacerta sicula. A Golgi study on the caudal hypothalamus, Cell Tissue Res. 223:61–71.PubMedCrossRefGoogle Scholar
  80. Gaidenko, G. V., 1978, Efferent connections of the dorsal cortex in tortoises, J. Evol. Biochem. Physiol. 13:268–270.Google Scholar
  81. Gamble, H. J., 1956, An experimental study of the secondary olfactory connexions in Testudo graeca, J. Anat. 90:15–29.PubMedGoogle Scholar
  82. Gans, C., 1978, The characteristics and affinities of the Amphisbaenia, Trans. Zool. Soc. London 34:347–416.CrossRefGoogle Scholar
  83. Garcia-Verdugo, J. M., Berbel, P. J., and Lopez-Garcia, C., 1981, Estudio con Golgi con microscopia electronica de los ependimocitos de la corteza cerebral del lagarto Lacerta galloti, Trab. Inst. Cajal 72:269–278.PubMedGoogle Scholar
  84. Garcia-Verdugo, J. M., Farinas, I., Molowny, A., and Lopez-Garcia, C., 1986, Ultrastructure of putative migrating cells in the cerebral cortex of Lacerta galloti, J. Morphol. 189:189–198.PubMedCrossRefGoogle Scholar
  85. Goffinet, A. M., 1983, The embryonic development of the cortical plate in reptiles: A comparative study in Emys orbicularis and Lacerta agilis, J. Comp. Neurol. 215:437–452.PubMedCrossRefGoogle Scholar
  86. Goffinet, A. M., Daumerie, C., Langerwerf, B., and Pieau, C., 1986, Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis, J. Comp. Neurol. 243:106–116.PubMedCrossRefGoogle Scholar
  87. Goldby, F., 1934, The cerebral hemispheres of Lacerta viridis, J. Anat. 68:157–215.PubMedGoogle Scholar
  88. Goldby, F., and Gamble, H. J., 1957, The reptilian cerebral hemispheres, Biol. Rev. 32:383–420.CrossRefGoogle Scholar
  89. Goossens, N., Dierickx, K., and Vandesande, F., 1980, Immunocytochemical localization of somatostatin in the brain of the lizard, Ctenosauria pectinata, Cell Tissue Res. 208:499–505.PubMedCrossRefGoogle Scholar
  90. Greenberg, N., 1982, A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis, J. Morphol. 174:217–236.CrossRefGoogle Scholar
  91. Guirado, S., De La Calle, A., Davila, J. C., and Marin-Giron, F., 1984, Light microscopy of the medial wall of the cerebral cortex of the lizard Psammodromus algirus, J. Morphol. 181:319–331.CrossRefGoogle Scholar
  92. Guirado, S., Davila, J. C., De La Calle, A., and Marin-Giron, F., 1987, A Golgi study of the dorsal cortex in the lizard Psammodromus algirus, J. Morphol. 194:265–274.CrossRefGoogle Scholar
  93. Gusel’nikov, V. I., and Pivavarov, A. S., 1978, Postsynaptic mechanism of habituation of turtle cortical neurons to moving stimuli, Neurosci. Behav. Physiol. 9:1–7.CrossRefGoogle Scholar
  94. Haberly, L. B., and Price, J. L., 1978, Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle, J. Comp. Neurol. 181:781–808.PubMedCrossRefGoogle Scholar
  95. Hall, J. A., Foster, R. E., Ebner, F. F., and Hall, W. C., 1977, Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta), Brain Res. 130:197–216.PubMedCrossRefGoogle Scholar
  96. Hall, W. C., and Ebner, F. F., 1970a, Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinas hypomelas) and the turtle (Pseudemys scripta), Brain Behav. Evol. 3:135–154.PubMedCrossRefGoogle Scholar
  97. Hall, W. C., and Ebner, F. F., 1970b, Thalamotelencephalic projections in the turtle (Pseudemys scripta), J. Comp. Neurol. 140:101–122.PubMedCrossRefGoogle Scholar
  98. Halpern, M., 1974, An experimental demonstration of the fornix system in a snake, Soc. Neurosci 4th Annu. Meet.Google Scholar
  99. Halpern, M., 1976, The efferent connections of the olfactory bulb and accessory olfactory bulb in the snakes, Thamnophis sirtalis and Thamnophis radix, J. Morphol. 150:553–578.PubMedGoogle Scholar
  100. Halpern, M., 1980, The telencephalon of snakes, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 257–295.CrossRefGoogle Scholar
  101. Halpern, M., and Frumin, N., 1973, Retinal projections in a snake (Thamnophis sirtalis), J. Morphol. 141:359–382.PubMedCrossRefGoogle Scholar
  102. Hartse, K. M., and Rechtschaffen, A., 1974, Effect of atropine sulfate on the sleep-related EEG spike activity of the tortoise, Geochelone carbonaria, Brain Behau. Evol. 9:81–94.CrossRefGoogle Scholar
  103. Hayes, W. N., and Hertzler, D. R., 1967, Role of the optic tectum and general cortex in reptilian vision, Psychon. Sci. 9:521.Google Scholar
  104. Heimer, L., 1969, Secondary olfactory connections, Ann. N.Y. Acad. Sci. 167:129–146.CrossRefGoogle Scholar
  105. Heller, S. B., and Ulinski, P. S., 1987, Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys, Anat. Embryol. 175:505–515.PubMedCrossRefGoogle Scholar
  106. Harmen, H. M., Jouvet, M., and Klein, M., 1964, Etude polygraphique du sommeil chez la tortue, C.R. Soc. Biol. 258:2175–2178.Google Scholar
  107. Herrick, C. L., 1892, Embryological notes on the brain of the snake, J. Comp. Neurol. 2:160–176.CrossRefGoogle Scholar
  108. Hertzler, D. R., and Hayes, W. N., 1967, Cortical and tectal function in visually guided behavior of turtles, J. Comp. Physiol. Psychol. 63:444–447.PubMedCrossRefGoogle Scholar
  109. Hetzel, W. von, 1974, Die Ontogenese des Telencephalon bie Lacerta sicula (Rafinesque), mit Besonderer Berücksichtigung der Pallialler Entwicklung, Zool. Beitr. N.S. 20:361–458.Google Scholar
  110. Hines, M., 1923, The development of the telencephalon in Sphenodon punctatum, J. Comp. Neurol. 35:483–537.CrossRefGoogle Scholar
  111. Hohmann, C. F., Carroll, P. T., and Ebner, F. F., 1983, Acetylcholine levels and choline acetyltransferase activity in turtle cortex, Brain Res. 258:120–122.CrossRefGoogle Scholar
  112. Hoogland, P. V., ten Donkelaar, H. J., and Cruce, J. A. F., 1978, Efferent connections of the septal area in a lizard (Tupinambis migropunctatus), Neurosci. Lett. 7:61–65.PubMedCrossRefGoogle Scholar
  113. Hotton, N., Maclean, P. D., Roth, J. J., and Roth, E. C., 1986, The Ecology and Biology of Mammal-Like Reptiles, Smithsonian Institution Press, Washington, D.C.Google Scholar
  114. Inoue, Y., Inoue, T., Nishimura, Y., and Shimai, K., 1974, The glial cells in the reptilian brain and spinal cord—Golgi study, Okajimas Folia Anat. Jpn. 51:161–188.PubMedGoogle Scholar
  115. Johnston, J. B., 1915, The cell masses in the forebrain of the turtle Cistudo Carolina, J. Comp. Neurol. 25:393–468.CrossRefGoogle Scholar
  116. Johnston, J. B., 1916, The development of the dorsal ventricular ridge in turtles, J. Comp. Neurol. 26:481–505.CrossRefGoogle Scholar
  117. Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of connecting sensory pathways within the cerebral cortex of the monkey brain, Brain 93:793–820.PubMedCrossRefGoogle Scholar
  118. Kallen, B., 1951, On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci, J. Comp. Neurol. 95:307–347.PubMedCrossRefGoogle Scholar
  119. Kallen, B., 1956, Notes on the mode of formation of brain nuclei during ontogenesis, C.R. Assoc. Anat. Reun. 42P:747–756.Google Scholar
  120. Karmanova, I. G., and Churnosov, E. V., 1972, Electrophysiological Investigation of natural sleep and wakefulness of turtles and chickens, Zh. Evol. Biochem. Fiziol. 8:59–65.Google Scholar
  121. Khatchaturian, H., Dores, R. M., Watson, S. J., and Akil, H., 1984, β-Endorphin/ACTH immunocytochemistry in the CNS of a lizard, Anolis carolinensis: Evidence for a major mesencephalic cell group, J. Comp. Neurol. 229:576–584.CrossRefGoogle Scholar
  122. Killackey, H., Pellmar, T., and Ebner, F., 1972, The effects of general cortex ablation on habituation in the turtle, Fed. Proc. 31:819.Google Scholar
  123. King, J. S., 1966, A comparative investigation of neuroglia in representative vertebrates: A silver carbonate study, J. Morphol. 119:435–466.PubMedCrossRefGoogle Scholar
  124. Kirsche, W., 1972, Die Entwicklung des Telencephalons der Reptilien und deren Verziehung zur Hirn-Bauplanlehre, Nova Acta Leopold. 37:1–78.Google Scholar
  125. Knapp, H., and Kang, D. S., 1968a, The visual pathways of the snapping turtle (Chelydra serpentina), Brain Behav. Evol. 1:19–42.CrossRefGoogle Scholar
  126. Knapp, H., and Kang, D. S., 1968b, The retinal projections of the sidenecked turtle (Podocnemis unifilis) with some notes on the possible origin of the pars dorsalis of the lateral geniculate body, Brain Behav. Evol. 1:369–404.CrossRefGoogle Scholar
  127. Kriegstein, A. R., 1985, An intact vertebrate visual system in vitro: Visually evoked pyramidal cell responses in turtle cortex, Neurosci. Lett. 22:S305.Google Scholar
  128. Kriegstein, A. R., 1987, Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system, J. Neurosci. 7:2488–2492.PubMedGoogle Scholar
  129. Kriegstein, A. R., and Connors, B. W., 1986, Cellular physiology of the turtle visual cortex: Synaptic properties and intrinsic circuitry, J. Neurosci. 7:178–191.Google Scholar
  130. Kriegstein, A. R., and Shen, J. M., 1987, Development of cortical inhibition: Appearance of synchronized neuronal discharges, Neurosci. Abstr. 13:954.Google Scholar
  131. Kriegstein, A. R., Shen, J. M., and Eshhar, N., 1986, Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation, J. Comp. Neurol. 254:330–340.PubMedCrossRefGoogle Scholar
  132. Kriegstein, A. R., Shen, J. M., and Blanton, M. G., 1988, Development of inhibitory function during corticogenesis in turtle, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. A. J. Smeets, eds.), Karger, Basel, pp. 131–141.Google Scholar
  133. Kruger, L., and Berkowitz, E. C., 1960, The main afferent connections of the reptilian telencephalon as determined by degeneration and electrophysiological methods, J. Comp. Neurol. 115:125–142.PubMedCrossRefGoogle Scholar
  134. Kruger, L., and Maxwell, D. S., 1967, Comparative fine structure of vertebrate neuroglia: Teleosts and reptiles, J. Comp. Neurol. 129:115–141.CrossRefGoogle Scholar
  135. Kunzle, H., 1985, The cerebellar and vestibular nuclear complexes in the turtle. II. Projections to the prosencephalon, J. Comp. Neurol. 242:122–133.PubMedCrossRefGoogle Scholar
  136. Kunzle, H., and Schnyder, H., 1984, Do retinal and spinal projections overlap within the turtle thalamus? Neuroscience 10:161–168.CrossRefGoogle Scholar
  137. Lacey, D. J., 1978, The organization of the hippocampus of the fence lizard: A light microscopic study, J. Comp. Neurol. 182:247–265.PubMedCrossRefGoogle Scholar
  138. Langston, W., Jr., 1973, The crocodilian skull in historical perspective, in: Biology of the Reptilia, Volume 4 (C. Gans and T. S. Parsons, eds.), Academic Press, New York, pp. 263–284.Google Scholar
  139. Larson-Prior, L. J., and Slater, N. T., 1988, GABAergic inhibition and epileptiform discharges in the turtle hippocampus in vitro, Brain Res. 460:369–375.PubMedCrossRefGoogle Scholar
  140. Larson-Prior, L., Ulinski, P. S., and Slater, N. T., 1989, Excitatory amino acid receptor mediated transmission in geniculocortical and intracortical pathways in visual cortex, Soc. Neurosci. Abstr. 15: 947.Google Scholar
  141. Lashley, K. S., 1929, Brain Mechanisms and Intelligence, Dover, New York.Google Scholar
  142. Lissberger, S. G., Morris, E. J., and Tychsen, L., 1987, Visual motion processing and sensory motor integration for smooth pursuit eye movements, Annu. Rev. Neurosci. 10:97–130.CrossRefGoogle Scholar
  143. Lohman, A. H. M., and Mentink, G. M., 1972, Some cortical connections of the tegu lizard Tupinambis tequixin, Brain Res. 45:325–344.PubMedCrossRefGoogle Scholar
  144. Lohman, A. H. M., and van Woerden-Verkely, E., 1976, Further studies on the cortical connections of the tegu lizard, Brain Res. 103:9–28.PubMedCrossRefGoogle Scholar
  145. Lohman, A. H. M., and van Woerden-Verkely, E., 1978, Ascending connections to the forebrain in the tegu lizard, J. Comp. Neurol. 182:555–594.PubMedCrossRefGoogle Scholar
  146. Lopez-Garcia, C., Molowny, A., and Perez-Clausell, J., 1983a, Volumetric and densitometric study in the cerebral cortex and septum of a lizard (Lacerta galloti) using the Timm method, Neurosci. Lett. 40:13–18.PubMedCrossRefGoogle Scholar
  147. Lopez-Garcia, C., Tineo, P. L., and Del Corral, J., 1984, Increase of the neuron number in some cerebral cortex areas of a lizard, Podarcis hispanica (Steind. 1870), during postnatal periods of life, J. Hirn forsch. 25:255–260.Google Scholar
  148. Lopez-Garcia, C., Martinez-Guijarro, F. J., Berbel, P., and Garcia-Verdugo, J. M., 1988, Long-spined polymorphic neurons of the medial cortex of lizards: A Golgi, Timm and electron-microscopic study, J. Comp. Neurol. 272:409–423.PubMedCrossRefGoogle Scholar
  149. Martinez-Garcia, F., Amiguet, M., Olucha, F., and Lopez-Garcia, C., 1986, Connections of the lateral cortex in the lizard Podarcis hispanica, Neurosci. Lett. 63:39–44.PubMedCrossRefGoogle Scholar
  150. Martinez-Guijarro, F. J., Berbel, P. J., Molowny, A., and Lopez-Garcia, C., 1984, Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta), Anat. Embryol. 170:321–326.PubMedCrossRefGoogle Scholar
  151. Martin-Perez, V., Garcia-Verdugo, J. M., and Llahi Sastre, S., 1981, Organization del septum die reptiles (Podarcis pityusensis; Lacertidae). Un estudio volumetrico y con Los metodos Die Golgi, Trab. Inst. Cajal 72:215–225.PubMedGoogle Scholar
  152. Mazurskaya, P. Z., 1973, Organization of neuronal receptive fields of the tortoise Emys orbicularis forebrain cortex, J. Evol. Biochem. Physiol. 8:550–555.Google Scholar
  153. Mazurskaya, P. Z., Davydova, T. V., and Smirnov, G. D., 1976, Functional organization of exteroceptive projections in the forebrain of the turtle, Neurosci. Trans. 1:109–117.CrossRefGoogle Scholar
  154. Minelli, G., 1966, Architettura delle corteccie di alcuni rettili (Lacerta muralis, Lacerta viridis, Testudo graecia, Crocodylus actuts), Arch. Zool. Ital. 51:543–573.Google Scholar
  155. Moore, G. P., and Tschirigi, R. D., 1962, Non-specific responses of reptilian cortex to sensory stimuli, Exp. Neurol. 5:196–209.PubMedCrossRefGoogle Scholar
  156. Mori, K., and Shepherd, G. M., 1979, Synaptic excitation and long-lasting inhibition of mitral cells in the in vitro turtle olfactory bulb, Brain Res. 172:155–159.PubMedCrossRefGoogle Scholar
  157. Mori, K., Nowycky, M. C., and Shepherd, G. M., 1981, Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb, J. Physiol. (London) 314:281–294.Google Scholar
  158. Morlock, H. C., 1972, Behavior following ablation of the dorsal cortex of turtles, Brain Behav. Evol. 5:256–263.PubMedCrossRefGoogle Scholar
  159. Mufson, E. J., Desan, P. H., Mesulam, M. M., Wainer, B. H., and Levy, A. I., 1984, Choline acetyltransferase-like immunoreactivity in the forebrain of the red-eared pond turtle (Pseudemys scripta elegans), Brain Res. 323:103–108.PubMedCrossRefGoogle Scholar
  160. Mulligan, K., and Ulinski, P. S., 1990, Organization of the geniculocortical projection in turtles: Isoatimuth lamellae in the visual cortex, J. Comp. Neurol. 296:531–547.PubMedCrossRefGoogle Scholar
  161. Naik, D. R., Sar, M., and Stumpf, W. E., 1981, Immunohistochemical localization of enkephalin in the central nervous system and pituitary of the lizard, Anolis carolinensis, J. Comp. Neurol. 198:583–601.PubMedCrossRefGoogle Scholar
  162. Newman, D. B., and Cruce, W. L. R., 1982, The reptilian brainstem reticular formation: A comparative study using Nissl and Golgi techniques, J. Morphol. 173:325–349.PubMedCrossRefGoogle Scholar
  163. Nieuwenhuys, R., 1982, An overview of the organization of the brain of actinopterygian fishes, Am. Zool. 22:287–310.Google Scholar
  164. Northcutt, R. G., 1967, Architectonic studies of the telencephalon of Iguana iguana, J. Comp. Neurol. 130:109–148.PubMedCrossRefGoogle Scholar
  165. Northcutt, R. G., 1970, The telencephalon of the western painted turtle, Chrysemys picta belli, Ill. Biol. Monogr. No. 43.Google Scholar
  166. Northcutt, R. G., 1978, Forebrain and midbrain organization in lizards and its evolutionary significance, in: The Behavior and Neurology of Lizards (N. Greenberg and P. D. MacLean, eds.), NIMH, Rockville, Md., pp. 11–64.Google Scholar
  167. Northcutt, R. G., 1981, Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4:301–350.PubMedCrossRefGoogle Scholar
  168. Northcutt, R. G., 1986, Lungfish neural characters and their bearings on sarcopterygian phylogeny, J. Morphol. Suppl. 1:277–298.CrossRefGoogle Scholar
  169. Northcutt, R. G., and Butler, A. B., 1974, Retinal projections in the northern water snake, Natrix sipedon sipedon, J. Morphol. 142:117–136.PubMedCrossRefGoogle Scholar
  170. Northcutt, R. G., and Davis, R. E., 1983, Telencephalic organization in ray-finned fishes, in: Fish Neurobiology, Volume 2, (R. E. Davis and R. G. Northcutt, eds), University of Michigan Press, Ann Arbor, pp. 203–236.Google Scholar
  171. Northcutt, R. G., and Kicliter, E., 1980, Organization of the amphibian telencephalon, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson and H. Vanegas, eds.), Plenum Press, New York, pp. 203–256.CrossRefGoogle Scholar
  172. Olucha, F., Poch, L., Martinez-Garcia, F., Schwerdtfeger, W. K., and Lopez-Garcia, C., 1988, Projections from the medial cortex in the brain of lizards. 1. Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining, J. Comp. Neurol. 276:469–480.PubMedCrossRefGoogle Scholar
  173. Orrego, F., 1961, The reptilian forebrain. I. The olfactory pathways and cortical areas in the turtle, Arch. Ital. Biol. 99:425–445.Google Scholar
  174. Orrego, F., 1962, The reptilian forebrain. III. Cross connections between the olfactory bulbs and the cortical areas in the turtle, Arch. Ital. Biol. 100:1–16.Google Scholar
  175. Orrego, F., and Lissenby, D., 1962, The reptilian forebrain. IV. Electrical activity in the turtle cortex, Arch. Ital Biol. 100:17–30.Google Scholar
  176. Ouimet, C. C., Patrick, R. L., and Ebner, F. F., 1981, An ultrastructural and biochemical analysis of norepinephrine-containing varicosities in the cerebral cortex of the turtle Pseudemys, J. Comp. Neurol. 195:289–304.PubMedCrossRefGoogle Scholar
  177. Ouimet, D. C., Patrick, R. L., and Ebner, F. F., 1985, The projection of three extrathalamic cell groups to the cerebral cortex of the turtle Pseudemys, J. Comp. Neurol. 237:77–84.PubMedCrossRefGoogle Scholar
  178. Papez, J. W., 1935, Thalamus of turtles and thalamic evolution, J. Comp. Neurol. 61:433–475.CrossRefGoogle Scholar
  179. Parent, A., 1973. Distribution of monoamine-containing nerve terminals in the brain of the painted turtle, Chrysemys picta, J. Comp. Neurol. 148:153–166.PubMedCrossRefGoogle Scholar
  180. Parent, A., 1979, Monoaminergic systems of the brain, in: Biology of the Reptilia, Volume 10 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp 247–285.Google Scholar
  181. Parent, A., 1986, Comparative Neurobiology of the Basal Ganglia, Wiley, New York.Google Scholar
  182. Parent, A., and Poirer, L. J., 1971, Occurrence and distribution of monoamine-containing neurons in the brain of the painted turtle (Chrysemys picta), J. Anat. 110:81–89.PubMedGoogle Scholar
  183. Parent, A., and Poitras, D., 1974, The origin and distribution of catecholaminergic axon terminals in the cerebral cortex of the turtle (Chrysemys picta), Brain Res. 78:345–358.PubMedCrossRefGoogle Scholar
  184. Parsons, T. S., 1970, The nose and Jacobson’s organ, in: Biology of the Reptilia, Volume 2 (C. Gans and T. S. Parsons, eds.), Academic Press, New York, pp. 99–192.Google Scholar
  185. Perez-Clausell, J., 1988, The organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica. A histochemical study, J. Comp. Nenrol. 267:153–171.CrossRefGoogle Scholar
  186. Peters, S., Koh, J., and Choi, D. W., 1987, Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, Science 236:589–593.PubMedCrossRefGoogle Scholar
  187. Peterson, E., 1980, Behavioral studies of telencephalic function in reptiles, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 343–388.CrossRefGoogle Scholar
  188. Pivavarov, A. S., and Trepakov, V. V., 1972, Intracellular analysis of unit responses to afferent stimulation in the general and hippocampal cortex of turtles, Neurosci. Behav. Physiol. 6:144–150.CrossRefGoogle Scholar
  189. Platel, R., 1969, Etude cytoarchitectonique qualitative et quantitative des aires corticals d’un saurien Scincus scinus (L.) Scincides, J. Hirnforsch. 11:31–66.PubMedGoogle Scholar
  190. Platel, R., Beckers, H. J. A., and Nieuwenhuys, R., 1973, Les champs corticaux chez Testudo hermanni (reptile chélonien) et chez Caiman crocodylus (reptile crocodilien), Acta Morphol. Neerl. Scand. 11:121–150.PubMedGoogle Scholar
  191. Powell, T. P. S., and Kruger, L., 1960, The thalamic projection upon the telencephalon in Lacerta viridis, J. Anat. 94:528–542.PubMedGoogle Scholar
  192. Prasada Rao, P. D., and Subhedar, N., 1977, A cytoarchitectonic study of the hypothalamus of the lizard, Calotes versicolor, Cell Tissue Res. 180:63–85.PubMedGoogle Scholar
  193. Prasada Rao, P. D., Subhedar, N., and Davie Raju, P., 1981, Cytoarchitectonic patterns of the hypothalamus in the cobra, Naja naja, Cell Tissue Res. 217:505–529.CrossRefGoogle Scholar
  194. Pritchard, P. C. H., 1967, Living Turtles of the World, T. F. H. Publications, Hong Kong.Google Scholar
  195. Pritz, M. B., and Stritzel, M. E., 1987, Percentage of intrinsic and relay cells in a thalamic nucleus projecting to general cortex in reptiles, Caiman crocodilus, Brain Res. 409:146–150.PubMedCrossRefGoogle Scholar
  196. Pyrethon, J., and Dusan-Pyrethon, D., 1969, Etude polygraphique du cycle vielle-sommeil chez trois genres de reptiles, C.R. Soc. Biol. 163:181–186.Google Scholar
  197. Quay, W. B., 1979, The parietal eye-pineal complex, in: The Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 245–406.Google Scholar
  198. Rainey, W. T., 1979, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. I. Nissl and Golgi analyses, J. Morphol. 160:121–142.PubMedCrossRefGoogle Scholar
  199. Rainey, W. T., and Ulinski, P. S., 1982a, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. II. The tectorotundal projection, J. Comp. Neurol. 209:187–207.PubMedCrossRefGoogle Scholar
  200. Rainey, W. T., and Ulinski, P. S., 1982b, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. III. Ultrastructural analyses, J. Comp. Neurol. 209:208–223.PubMedCrossRefGoogle Scholar
  201. Rainey, W. T., and Ulinski, P. S., 1986, Morphology of neurons in the dorsal lateral geniculate complex in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol. 253:440–465.PubMedCrossRefGoogle Scholar
  202. Ramón, P., 1891, El encefalo de los reptiles, Trab. Lab. Hist. Fac. Med. Zaragoza pp. 1-30.Google Scholar
  203. Ramón, P., 1896, Estructura del encefalo del camaleon, Rev. Trim, Microgr. 1:146–182.Google Scholar
  204. Reese, A. M., 1910, The development of the brain of the American alligator, Smithson. Misc. Collect. 54(2):1922.Google Scholar
  205. Reiner, A., 1983, Comparative studies of opioid peptides: Enkephalin distribution in turtle central nervous system, Neurosci. Abstr. 9:439.Google Scholar
  206. Reiner, A., and Karten, H. J., 1985, Comparison of olfactory bulb projections in pigeons and turtles, Brain Behav. Evol. 27:11–27.PubMedCrossRefGoogle Scholar
  207. Reiner, A., and Powers, A. S., 1983, The effects of lesions of telencephalic visual structures on visual discriminative performance in turtles (Chrysemys picta picta), J. Comp. Neurol. 218:1–24.PubMedCrossRefGoogle Scholar
  208. Reiner, A., Brauth, S. E., and Karten, H. J., 1984, Evolution of the amniote basal ganglia, Trends Neurosci. 7:320–325.CrossRefGoogle Scholar
  209. Reiner, A., Eldred, W. D., Beinfeld, M. C., and Krause, J. E., 1985, The co-occurrence of a substance P-like peptide and cholecystokinin-8 in a fiber system of turtle cortex, J. Neurosci. 5:1527–1544.PubMedGoogle Scholar
  210. Reperant, M. J., 1976, Afferences et efferences telencephaliques du cortex dorsal de la vipere (Vipera aspis L.) Donnees preliminaries, C.R. Acad. Sci. 283:809–812.Google Scholar
  211. Riss, W., Halpern, M., and Scalia, F., 1969, The quest for clues to forebrain evolution—The study of reptiles, Brain Behav. Evol. 2:1–50.CrossRefGoogle Scholar
  212. Romer, A. S., 1956, Osteology of the Reptiles, University of Chicago Press, Chicago.Google Scholar
  213. Rose, M., 1923, Histologische Lokalisation des Vorderhirns der Reptilien, J. Psychol. Neurol. 29:219–272.Google Scholar
  214. Scalia, F., Halpern, M., and Riss, W., 1969, Olfactory bulb projections in the South American caiman, Brain Behav. Evol. 2:238–262.CrossRefGoogle Scholar
  215. Schlegel, J. R., and Kriegstein, A. R., 1987, Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta, J. Comp. Neurol. 265:521–529.PubMedCrossRefGoogle Scholar
  216. Schmidt, K. P., and Inger, R. F., 1957, Living Reptiles of the World, Doubleday, New York.Google Scholar
  217. Schwerdtfeger, W. K., and Lorente, M.-J., 1988a, GABA-immunoreactive neurons in the medial and dorsomedial cortices of the lizard. Some data on their structure, distribution and synaptic relations, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. Smeets, eds.), Karger, Basel, pp. 110–121.Google Scholar
  218. Schwerdtfeger, W. K., and Lorente, M.-J., 1988b, Laminar distribution and morphology of gammaaminobutryric acid (GABA)-immunoreactive neurons in the medial and dorsomedial areas of the cerebral cortex of the lizard Podarcis hispanica, J. Comp. Neurol. 278:473–485.PubMedCrossRefGoogle Scholar
  219. Schwerdtfeger, W. K., and Smeets, W. J., (eds.), 1988, Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles, Karger, Basel.Google Scholar
  220. Schwerdtfeger, W. K., Lopez-Garcia, C., Martinez-Guijarro, F. J., and Roberto, P. L. T., 1986, GABAergic neurons in the septum of the lizard, Podarcis hispanica, Brain Res. 384:184–188.PubMedCrossRefGoogle Scholar
  221. Senn, D. G., 1979, Embryonic development of the central nervous system, in: Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 173–244.Google Scholar
  222. Senn, D. G., and Northcutt, R. G., 1973, The forebrain and midbrain of some squamates and their bearing on the origin of snakes, J. Morphol. 140:135–152.PubMedCrossRefGoogle Scholar
  223. Shanklin, W. M., 1930, The central nervous system of Chameleo vulgaris, ActaZool. (Stockholm) 11:425–490.CrossRefGoogle Scholar
  224. Shen, J. M., and Kriegstein, A. R., 1987, Turtle hippocampal cortex contains distinct cell types, burstfiring neurons, and an epileptogenic subfield, J. Neurophysiol. 56:1616–1649.Google Scholar
  225. Shen, J. M., Huguenard, J. R., and Kriegstein, A. R., 1987, Development of cortical inhibition: Functional GABA A receptors at earliest stages of corticogenesis, Neurosci. Abstr. 13:954.Google Scholar
  226. Sjostrom, A. M., and Ulinski, P. S., 1985, Morphology of retinogeniculate terminals in the turtle, Psuedemys scripta elegans, J. Comp. Neurol. 238:107–120.PubMedCrossRefGoogle Scholar
  227. Skeen, L. C., Pindzola, R. R., and Schofield, B. R., 1984, Tangential organization of olfactory, association, and commissural projections to olfactory cortex in a species of reptile (Trionyx spiniferus), bird (Aix sponsa), and mammal (Tupaia glis), Brain Behav. Evol. 25:206–216.PubMedCrossRefGoogle Scholar
  228. Sligar, C. M., and Voneida, T. J., 1981, Efferent projections of the septum in the tegu lizard, Tupinambis nigropunctatus, Anat. Rec. 201:197–202.PubMedCrossRefGoogle Scholar
  229. Smeets, W. J. A. J., 1988, The distribution of dopamine immunoreactivity in the forebrain and midbrain of the snake Python regius: A study with antibodies against dopamine, J. Comp. Neurol. 271:115–129.PubMedCrossRefGoogle Scholar
  230. Smeets, W. J. A. J., and Steinbusch, H. W. M., 1988, Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko, J. Comp. Neurol. 271:419–434.PubMedCrossRefGoogle Scholar
  231. Smeets, W. J. A. J., Nieuwenhuys, R., and Roberts, B. L., 1983, The Central Nervous System of Cartilaginous Fishes, Springer, Berlin.CrossRefGoogle Scholar
  232. Smeets, W. J. A. J., Hoogland, P. V., and Lohman, A. H. M., 1986, A forebrain atlas of the lizard Gekko gekko, J. Comp. Neurol. 254:1–19.PubMedCrossRefGoogle Scholar
  233. Smeets, W. J. A. J., Jonker, A. J., and Hoogland, P. V., 1987, Distribution of dopamine in the forebrain and midbrain of the red-eared turtle, Pseudemys scripta elegans, reinvestigated using antibodies against dopamine, Brain Behav. Evol. 30:121–142.PubMedCrossRefGoogle Scholar
  234. Smith, L. M., Ebner, F. F., and Colonnier, M., 1980, The thalamocortical projection in Pseudemys turtles: A quantitative electron microscope study, J. Comp. Neurol. 190:445–462.PubMedCrossRefGoogle Scholar
  235. Sotelo, C., Llinas, R., and Baker, R., 1974, Structural study of inferior olivary nucleus of the cat: Morphological correlates of electronic coupling, J. Neurophysiol. 37:541–559.PubMedGoogle Scholar
  236. Starck, D., 1979, Cranio-cerebral relations in recent reptiles, in: Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 1–38.Google Scholar
  237. Stensaas, L. J., and Stensaas, S. S., 1968, Light microscopy of glial cells in turtles and birds, Z. Zellforsch. 91:315–340.PubMedCrossRefGoogle Scholar
  238. Subhedar, N., and Rama Krishna, N. S., 1984, A Golgi-type study of the hypothalamus of the lizard, Calotes versicolor, Cell Tissue Res. 236:399–411.PubMedCrossRefGoogle Scholar
  239. Tandler, J., and Kantor, H., 1907, Die Entwicklungsgeschicte des Geckogehirnes, Anat. Hefte 33:553–665.CrossRefGoogle Scholar
  240. ten Donkelaar, H. J., and Nieuwenhuys, R., 1979, The brainstem, in: Biology of the Reptilia, Volume 10 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 133–200.Google Scholar
  241. ten Donkelaar, H.J., Bangma, G. C., Barbas-Henry, H. A., DeBoer-van Huizen, R., and Wolters, J. G., 1987, The brainstem in a lizard, Varanus exanthematicus, Adv. Anat. Embryol. Cell Biol. 107:1–168.PubMedCrossRefGoogle Scholar
  242. Ulinski, P. S., 1974, Cytoarchitecture of cerebral cortex in snakes, J. Comp. Neurol. 158:243–266.PubMedCrossRefGoogle Scholar
  243. Ulinski, P. S., 1975, Corticoseptal projections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Comp. Neurol 164:375–388.PubMedCrossRefGoogle Scholar
  244. Ulinski, P. S., 1976, Intracortical connections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Morphol. 150:463–484.PubMedGoogle Scholar
  245. Ulinski, P. S., 1977a, Intrinsic organization of snake medial cortex: An electron microscopic and Golgi study, J. Morphol 152:247–280.PubMedCrossRefGoogle Scholar
  246. Ulinski, P. S., 1977b, Tectal efferents in the banded water snake, Natrix sipedon, J. Comp. Neurol. 173:251–274.PubMedCrossRefGoogle Scholar
  247. Ulinski, P. S., 1979, Intrinsic organization of snake dorsomedial cortex: An electronmicroscopic and Golgi study, J. Morphol 161:185–210.PubMedCrossRefGoogle Scholar
  248. Ulinski, P. S., 1981, Thick caliber projections from brainstem to cerebral cortex in the snakes Thamnophis sirtalis and Natrix sipedon, Neuroscience 6:1725–1743.PubMedCrossRefGoogle Scholar
  249. Ulinski, P. S., 1983, Dorsal Ventricular Ridge: A Treatise on Forebrain Organization in Reptiles and Birds, Wiley-Interscience, New York.Google Scholar
  250. Ulinski, P. S., 1986a, Neurobiology of the therapsid-mammal transition, in: The Ecology and Biology of Mammal-Like Reptiles (J. J. Roth, E. C. Roth, P. D. MacLean, and N. Hotton III, eds.), Smithsonian Institution, Washington, D.C., pp. 149–172.Google Scholar
  251. Ulinski, P. S., 1986b, Organization of corticogeniculate projections in the turtle, Pseudemys scripta, J. Comp. Neurol. 254:529–542.PubMedCrossRefGoogle Scholar
  252. Ulinski, P. S., 1987a, Ultrastructure of the dorsal lateral geniculate complex in turtles of the genera Pseudemys and Chrysemys, Brain Behav. Evol. 29:117–142.CrossRefGoogle Scholar
  253. Ulinski, P. S., 1987b, Laminar organization of efferents from turtle dorsal lateral geniculate complex, Am. Zool. 27:166A.Google Scholar
  254. Ulinski, P. S., 1987c, Distribution of GABA accumulating neurons in the diencephalon of the turtle, Pseudemys scripta, Anat. Rec. 218:141A.Google Scholar
  255. Ulinski, P. S., 1988, Functional organization of turtle visual cortex, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. Smeets, eds.), Karger, Basel, pp. 151–161.Google Scholar
  256. Ulinski, P. S., and Kanarek, D. A., 1973, Cytoarchitecture of nucleus sphericus in the common boa, Constrictor constrictor, J. Comp. Neurol 151:159–174.PubMedCrossRefGoogle Scholar
  257. Ulinski, P. S., and Mulligan, K. A., 1987, Representation of visual space in the visual cortex of turtles, Neurosci. Abstr. 13:1048.Google Scholar
  258. Ulinski, P. S., and Nautiyal, J., 1988, Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol 276:92–112.PubMedCrossRefGoogle Scholar
  259. Ulinski, P. S., and Peterson, E. H., 1981, Patterns of olfactory projections in the desert iguana, Dipsosaurus dorsalis, J. Morph. 168:189–228.CrossRefGoogle Scholar
  260. Ulinski, P. S., and Rainey, W. T., 1980, Intrinsic organization of snake lateral cortex, J. Morphol. 165:85–116.CrossRefGoogle Scholar
  261. Ulinski, P. S., du Lac, S., and Dacey, D. M., 1983, Descending projections of the geniculate complex, Invest. Ophthalmol. Vis. Sci. 24:64.Google Scholar
  262. Umeda, S., Takeuchi, Y., and Sano, Y., 1983, Immuno-histochemical demonstration of serotonin neurons in the central nervous system of the turtle (Clemmys japonica), Anat. Embryol. 168:1–19.CrossRefGoogle Scholar
  263. Unger, L., 1906, Untersuchungen über die Morphologie und Faserung des Reptiliengehirns. I. Das Vorderhirn des Geckos, Anat. Hefte 31:273–348.Google Scholar
  264. Vasilescu, E., 1970, Sleep and wakefulness in the tortoise (Emys orbicularis), Rev. Roum. Biol. Ser. Zool. 15:177–179.Google Scholar
  265. Voneida, T. J., and Ebbesson, S. O. E., 1969, On the origin and distribution of axons in the pallial commissures in the tegu lizard (Tupinambis nigropunctatus), Brain Behav. Evol. 2:467–481.CrossRefGoogle Scholar
  266. Walker, J. M., and Berger, R. J., 1973, A polygraphic study of the tortoise (Testudo denticulata). Absence of electrophysiological signs of sleep, Brain Behav. Evol. 8:453–467.PubMedCrossRefGoogle Scholar
  267. Ware, C. B., 1974, Projections of dorsal cortex in the side necked turtle (Podocnemis unifilis, Soc. Neurosci., 4th Annu. Meet., p. 466.Google Scholar
  268. Warner, F. J., 1931, The cell masses in the telencephalon and diencephalon of the rattlesnake, Crotalus atrox, Proc. Acad. Sci. (Amsterdam) 34:1156–1163.Google Scholar
  269. Warner, F. J., 1946, The development of the forebrain of the American watersnake (Natrix sipedon), J. Comp. Neurol. 84:385–418.PubMedCrossRefGoogle Scholar
  270. Weiss, J. C., and Ulinski, P. S., 1985, Synaptic organization of dorsal area of turtle, Pseudemys scripta elegans, J. Morphol. 184:135–154.PubMedCrossRefGoogle Scholar
  271. Westbrook, G. L., and Mayer, M. L., 1987, Micromolar concentrations of Zn 2+ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328:640–643.PubMedCrossRefGoogle Scholar
  272. Wolters, J. G., ten Donkelaar, H. J., and Verhofstad, A. A. J., 1984, Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study based on the use of antibodies to tyrosine hydroxylase, Neuroscience 13:469–497.PubMedCrossRefGoogle Scholar
  273. Wolters, J. G., ten Donkelaar, H. J., Steinbusch, H. W. M., and Verhofstan, A. A. J., 1985, Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study, Neuroscience 14:169–193.PubMedCrossRefGoogle Scholar
  274. Wouterlood, F. G., Alones, V. E., and Lohman, A. H. M., 1981, An electron microscopic study of the mediodorsal cerebral cortex in the lizard Agama agama, Anat. Embryol. 163:185–200.CrossRefGoogle Scholar
  275. Wouterlood, F. G., Alones, V. E., Elprana, D., and Lohman, A. H. M., 1982, Terminal degeneration in the mediodorsal cerebral cortex of the lizard Agama agama: Light and electron microscopy, J. Morphol. 172:45–58.CrossRefGoogle Scholar
  276. Yamamoto, K. M., and Shimizu, N., 1977, Comparative anatomy of the topography of catecholamine containing neuron system in the brain stem from birds to teleosts, J. Hirnforsch. 18:229–240.PubMedGoogle Scholar
  277. Zangerl, R., 1969, The turtle shell, in: Biology of the Reptilia, Volume 1 (C. Gans, A. d’A. Bellairs, and T. S. Parson, eds.), Academic Press, New York, pp. 311–340.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Philip S. Ulinski
    • 1
  1. 1.Department of Organismal Biology and Anatomy, and Committee on NeurobiologyUniversity of ChicagoChicagoUSA

Personalised recommendations