Neurotransmitter Receptors in Developing Barrel Cortex

  • Jannon L. Fuchs
Part of the Cerebral Cortex book series (CECO, volume 11)

Abstract

The whisker barrel cortex can serve as a useful model for examining the role of neurotransmitter receptors in brain development. Most of the synapses in neocortex of laboratory rats and mice are formed during the first 3–4 postnatal weeks (Wolff, 1978). During this period, synaptic remodeling takes place as thalamocortical, callosal, and intrinsic connections are sharpened and refined (Wise and Jones, 1978; O’Leary et al., 1981; Greenough and Chang, 1988). The developmental blueprint can be readily modified by neonatal whisker deafferentation, and the consequences can be well localized because of the one-to-one correspondence between major vibrissae and whisker barrels. Moreover, its location on the dorsal surface of the brain makes barrel cortex accessible to direct pharmacological manipulations.

Keywords

Somatosensory Cortex Neurotransmitter Receptor Cortical Plate Postnatal Development Transmitter Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, N. D., and Land, P. W., 1991, Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: Effects of neonatal versus adult sensory deprivation, J. Comp. Neurol. 307:200–213.PubMedGoogle Scholar
  2. Alkondon, M., and Albuquerque, E. X., 1991, Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons, J. Recept. Res. 11:1001–1021.PubMedGoogle Scholar
  3. Armstrong, R. C, and Montminy, M. R., 1993, Transsynaptic control of gene expression, Annu. Rev. Neurosci. 16:17–29.PubMedGoogle Scholar
  4. Austin, T. A., Grady, S. M., and Fuchs, J. L., 1992, Nicotinic acetylcholine receptor alpha3 subunit mRNA in rat visual cortex: Ontogeny and effects of neonatal enucleation, Soc. Neurosci. Abstr. 18:1470.Google Scholar
  5. Balcar, V. J., Zetzsche, T., and Wolff, J. R., 1992, Glutamate decarboxylase in developing rat neocortex: Does it correlate with the differentiation of GABAergic neurons and synapses? Neurochem. Res. 17:253–260.PubMedGoogle Scholar
  6. Balduini, W., Murphy, S. D., and Costa, L. G., 1987, Developmental changes in muscarinic receptorstimulated phosphoinositide metabolism in rat brain, J. Pharmacol. Exp. Ther. 241:421–427.PubMedGoogle Scholar
  7. Bassant, M. H., Ennouri, K., and Lamour, Y., 1990, Effects of iontophoretically applied monoamines on somatosensory cortical neurons of unanesthetized rats, Neuroscience. 39:431–439.PubMedGoogle Scholar
  8. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and norepinephrine, Nature. 320:172–176.PubMedGoogle Scholar
  9. Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., and Rhoades, R. W., 1993, Serotonin IB receptors in the developing somatosensory and visual cortices are located on thalamocortical axons, Proc. Natl. Acad. Sa. USA. 90:153–157.Google Scholar
  10. Blakemore, C, and Molnar, Z., 1990, Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55:491–504.PubMedGoogle Scholar
  11. Blue, M. E., Erzurumlu, R. S., and Jhaveri, S., 1991, A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex, Cereb. Cortex. 1:380–389.PubMedGoogle Scholar
  12. Blue, M. E., Fotuhi, M., Dawson, T. M., Snyder, S. H., and Johnston, M. V., 1992, Development of non-NMDA glutamate receptors in rat barrel field cortex, Soc. Neurosa. Abstr. 18:1542.Google Scholar
  13. Brené, S., Lindefors, N., and Persson, H., 1992, Midbrain dopamine neurons regulate preprotachykinin-A mRNA expression in the rat forebrain during development, Mol. Brain Res. 14:13–19.PubMedGoogle Scholar
  14. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W., 1992, Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex, Dev. Brain Res. 66: 244–250.Google Scholar
  15. Chmielowska, J., Stewart, M. G., and Bourne, R. C, 1988, Gamma-aminobutyric acid (GABA) immunoreactivity in mouse and rat first somatosensory (SI) cortex: Description and compari-sion, Brain Res. 439:155–168.PubMedGoogle Scholar
  16. Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Nenrol. 285:325–338.Google Scholar
  17. Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C, Bertrand, S., Millar, N., Valera, S., Barkas, T., and Ballivet, M., 1990, A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX, Neuron. 5:847–856.PubMedGoogle Scholar
  18. D’Amato, R. J., Blue, M. E., Largent, B. L., Lynch, D. R., Ledbetter, D. J., Molliver, M. E., and Snyder, S. S., 1987, Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas, Proc. Natl. Acad. Sci. USA. 84:4322–4326.PubMedGoogle Scholar
  19. Daval, J.-L., Werck, M. C, Nehlig, A., and Pereira de Vasconcelos, A., 1991, Quantitative autoradiographic study of the postnatal development of adenosine A1 receptors and their coupling to G proteins in the rat brain, Neuroscience. 40:841–851.PubMedGoogle Scholar
  20. de la Garza, R., McGuire, T. J., Freedman, R., and Hoffer, B. J., 1987, Selective antagonism of nicotine actions in the rat cerebellum with a-bungarotoxin, Neuroscience. 23:887–891.PubMedGoogle Scholar
  21. Dudek, S. M., Bowen, W. D., and Bear, M. F., 1989, Postnatal changes in glutamate stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes, Dev. Brain Res. 47:123–128.Google Scholar
  22. Durham, D., and Woolsey, T. A., 1978, Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex, J. Comp. Nenrol. 178:629–644.Google Scholar
  23. Dusart, I., Marty, S., and Peschanski, M., 1992, Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system, Neuroscience. 51:137–148.PubMedGoogle Scholar
  24. Erdö, S. L., and Wolff, J. R., 1990, Postnatal development of the excitatory amino acid system in visual cortex of the rat. Changes in ligand binding to NMDA, quisqualate and kainate receptors, hit. J. Dev. Neurosa. 8:199–204.Google Scholar
  25. Erzurumlu, R. S., and Jhaveri, S., 1990, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Dev. Brain Res. 56:229–234.Google Scholar
  26. Forray, C, and El-Fakahany, E., 1990, On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex, Mol. Pharmacol. 37:893–902.PubMedGoogle Scholar
  27. Freedman, R., Wetmore, C, Strömberg, I., Leonard, S., and Olson, L., 1993, a-Bungarotoxin binding to hippocampal interneurons: Immunocytochemical characterization and effects on growth factor expression, J. Neurosci. 13:1965–1975.PubMedGoogle Scholar
  28. Fuchs, J. L., 1979, Ontogeny of patterns of [14C]2-deoxyglucose uptake in selected regions of the rat brain, in: Ontogeny of circadian rhythmicity and regional [1.4C]2-deoxyglucose uptake in the rat brain, Ph.D. dissertation, University of California, San Diego, pp. 22-60.Google Scholar
  29. Fuchs, J. L., 1989, [125I]a-Bungarotoxin binding marks primary sensory areas of developing rat neocortex, Brain Res. 501:223–234.PubMedGoogle Scholar
  30. Fuchs, J. L., 1993, GABAA receptors in rat whisker barrel cortex: Ontogeny and effects of whisker trimming, Soc. Neurosci. Abstr. 19:674.Google Scholar
  31. Glazewski, S., Kossut, M., Siucinska, E., and Skangiel-Kramska, J., 1990, Cholinergic markers in the plasticity of murine barrel field, Ada Neurobiol. Exp. 50:163–172.Google Scholar
  32. Goffinet, A. M., Hemmendinger, L. M., and Caviness, V. S., Jr., 1986, Autoradiographic study of ßj-adrenergic receptor development in the mouse forebrain, Dev. Brain Res. 24:187–191.Google Scholar
  33. Gonzalez, B. J., Leroux, P., Bodenant, C, and Vaudry, H., 1991, Ontogeny of somatostatin receptors in the rat somatosensory cortex, J. Comp. Neural. 305:177–188.Google Scholar
  34. Greenough, W. T., and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.Google Scholar
  35. Happe, H. K., and Murrin, L. C, 1990, Tritium quench in autoradiography during postnatal development of rat forebrain, Brain Res. 525:28–35.PubMedGoogle Scholar
  36. Happe, H. K., and Murrin, L. C, 1992, Development of high-affinity choline transport sites in rat forebrain: A quantitative autoradiography study with [3H]hemicholinium-3, J. Comp. Neurol. 321:591–611.PubMedGoogle Scholar
  37. Harden, T. K., Wolfe, B. B., Sporn, J. R., Perkins, J. P., and Molinoff, P. B., 1977, Ontogeny of ß-adrenergic receptors in rat cerebral cortex, Brain Res. 125:99–108.PubMedGoogle Scholar
  38. Harrison, M. B., Hogan, C. J., and Lothman, E. W., 1992, Developmental changes in tritium autoabsorption, Neuroimage. 1:3–9.PubMedGoogle Scholar
  39. Heacock, A. M., Fisher, S. K., and Agranoff, B. W., 1987, Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover, J. Neurochem. 48:1904–1911.PubMedGoogle Scholar
  40. Hendry, S. H. C, Fuchs, J., DeBlas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex, J. Neurosci. 10:2438–2450.PubMedGoogle Scholar
  41. Herkenham, M., and McLean, S., 1986, Mismatches between receptor and transmitter localizations in the brain, in: Quantitative Receptor Autoradiography (C. A. Boast, E. W. Snowhill, and C. A. Altar, eds.), Liss, New York, pp. 137–171.Google Scholar
  42. Höhmann, C. F., Pert, C. C, and Ebner, F. F., 1985, Development of cholinergic markers in mouse forebrain. II. Muscarinic receptor binding in cortex, Dev. Brain Res. 23:243–253.Google Scholar
  43. Hwang, P. M., Bredt, D. S., and Snyder, S. H., 1990, Autoradiographic imaging of phosphoinositide turnover in the brain, Science. 249:802–804.PubMedGoogle Scholar
  44. Insel, T. R., Battaglia, G., Fairbanks, D. W., and De Souza, E. B., 1988, The ontogeny of brain receptors for corticotropin-releasing factor and the development of their functional association with adenylate cyclase, J. Neurosci. 8:4151–4158.PubMedGoogle Scholar
  45. Insel, T. R., Miller, L. P., and Gelhard, R. E., 1990, The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-methyl-D-aspartate and quisqualate receptors, Neuroscience. 35:31–43.PubMedGoogle Scholar
  46. Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Cornp. Neurol. 195:367–389.Google Scholar
  47. Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D., and Bloom, F. E., 1992, Reversal of diabetes insipidus in Brattleboro rats: Intrahypothalamic injection of vasopressin mRNA, Science. 255:996–998.PubMedGoogle Scholar
  48. Johnston, M. V., 1988, Biochemistry of neurotransmitters in cortical development, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 211–236.Google Scholar
  49. Kalb, R. G., Lidow, M. S., Halsted, M. J., and Hockfield, S., 1992, The developing spinal cord ventral horn, Proc. Natl. Acad. Sci. USA. 89:8502–8506.PubMedGoogle Scholar
  50. Kent, J. L., Pert, C. B., and Herkenham, M., 1982, Ontogeny of opiate receptors in rat forebrain: Visualization by in vitro autoradiography, Dev. Brain Res. 2:487–504.Google Scholar
  51. Kiyama, H., Inagaki, S., Kito, S., and Tohyama, M., 1987, Ontogeny of [3H]neurotensin binding sites in the rat cerebral cortex: Autoradiographic study, Dev. Brain Res. 31:303–306.Google Scholar
  52. Kornblum, H. I., Hurlbut, D. E., and Leslie, F. M., 1987, Postnatal development of multiple opioid receptors in rat brain, Dev. Brain Res. 37:21–41.Google Scholar
  53. Kossut, M., 1992, Plasticity of barrel cortex neurons, Prog. Neurobiol. 39:389–422.PubMedGoogle Scholar
  54. Kossut, M., and Hand, P., 1984, The development of the vibrissal cortical column: A 2-deoxyglucose study in the rat, Neurosci. Lett. 46:1–6.PubMedGoogle Scholar
  55. Kossut, M., Skangiel-Kramska, J., Siucinska, E., and Glazewski, S., 1991a, Participation of GABAa receptors in the plasticity of mouse barrel cortex, Third IBRO Congr. Abstr. 310.Google Scholar
  56. Kossut, M., Stewart, M. G., Siucinska, E., Bourne, R. C, and Gabbott, P. L. A., 1991b, Loss of gamma-aminobutyric acid (GABA) immunoreactivity from mouse first somatosensory (SI) cortex following neonatal, but not adult, denervation. Brain Res. 538:165–170.PubMedGoogle Scholar
  57. Kristt, D. A., 1979, Development of neocortical circuitry: Histochemical localization of acetylcholinesterase in relation to the cell layers of rat somatosensory cortex, J. Comp. Neurol. 186:1–16.PubMedGoogle Scholar
  58. Kristt, D. A., and Molliver, M. E., 1976, Synapses in newborn rat cerebral cortex: A quantitative ultrastructural study, Brain Res. 108:180–186.PubMedGoogle Scholar
  59. Kumar, A., and Schliebs, R., 1992, Postnatal laminar development of cholinergic receptors, protein kinase C and dihydropyridine-sensitive calcium antagonist binding in rat visual cortex: Effect of visual deprivation, Int. J. Dev. Neurosci. 10:491–504.PubMedGoogle Scholar
  60. Lamour, Y., Dutar, P., Jobert, A., and Dykes, R. W., 1988, An iontophoretic study of single so-matosensory neurons in rat granular cortex serving the limbs: A laminar analysis of glutamate and acetylcholine effects on receptive-field properties, J. Neurophysiol. 60:725–750.PubMedGoogle Scholar
  61. Land, P. W., and Simons, D. J., 1985, Metabolic activity in SmI cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae, Brain Res. 341:189–194.PubMedGoogle Scholar
  62. Lauder, J. M., 1983, Hormonal and humoral influences on brain development, Psychoneuroendocrinology. 8:121–155.PubMedGoogle Scholar
  63. Laurie, D. J., Wisden, W., and Seeburg, P. H., 1992, The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development, J. Neurosci. 12:4151–4172.PubMedGoogle Scholar
  64. Lee, W., Nicklaus, K.J., Manning, D. R., and Wolfe, B. B., 1990, Ontogeny of cortical muscarinic receptor subtypes and muscarinic receptor-mediated responses in rat, J. Pharmacol. Exp. Ther. 252:482–490.PubMedGoogle Scholar
  65. Leslie, M. J., Bennett-Clarke, C. A., and Rhoades, R. W., 1992, Serotonin IB receptors form a transient vibrissa-related pattern in the primary somatosensory cortex of the developing rat, Dev. Brain Res. 69:143–148.Google Scholar
  66. Levin, B. E., Craik, R. L., and Hand, P. J., 1988, The role of norepinephrine in adult rat somatosensory (SmI) cortical metabolism and plasticity, Brain Res. 443:261–271.PubMedGoogle Scholar
  67. Levitt, P., and Moore, R. Y., 1979, Development of the noradrenergic innervation of neocortex, Brain Res. 162:243–259.PubMedGoogle Scholar
  68. Lidow, M. S., and Rakic, P., 1992, Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development, Cereb. Cortex. 2:401–416.PubMedGoogle Scholar
  69. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., Geschwind, D. H., and Rakic, P., 1989, Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey, Neuroscience. 32:609–627.PubMedGoogle Scholar
  70. Loeb, E. P., Chang, F.-L. F., and Greenough, W. T., 1987, Effects of neonatal 6-hydroxydopamine treatment upon morphological organization of the posteromedial barrel subfield in mouse somatosensory cortex, Brain Res. 403:113–120.PubMedGoogle Scholar
  71. Luetje, C. W., and Patrick, J., 1991, Both a-and ß-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors, J. Neurosci. 11:837–845.PubMedGoogle Scholar
  72. Luhmann, H. J., and Prince, D. A., 1990, Transient expression of polysynaptic NMDA receptor-mediated activity during neocortical development, Neurosci. Lett. 111:109–115.PubMedGoogle Scholar
  73. McCasland, J. S., Bernardo, K. L., Probst, K. L., and Woolsey, I. A., 1992, Cortical local circuit axons do not mature after early deafferentation, Proc. Natl. Acad. Sci. USA. 89:1832–1836.PubMedGoogle Scholar
  74. McCormick, D. A., Wang, Z., and Huguenard, J., 1993, Neurotransmitter control of neocortical neuronal activity and excitability, Cereb. Cortex. 3:387–398.PubMedGoogle Scholar
  75. Mansour, A., Meador-Woodruff, J. H., Zhou, Q., Civelli, D., Akil, H., and Watson, S. J., 1992, A comparison of D, receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques, Neuroscience. 46:959–971.PubMedGoogle Scholar
  76. Martin, J.-L., Feinstein, D. L., Yu, N., Sorg, C, Rossier, C, and Magistretti, P. J., 1992, VIP receptor-subtypes in mouse cerebral cortex: Evidence for a differential localization in astrocytes, microvessels and synaptosomal membranes, Brain Res. 587:1–12.PubMedGoogle Scholar
  77. Meier, E., Hertz, L., and Schousboe, A., 1991, Neurotransmitters as developmental signals, Neurochern. Int. 19:1–15.Google Scholar
  78. Miller, L. P., Johnson, A. E., Gelhard, R. E., and Insel, T. R., 1990, The ontogeny of excitatory amino acid receptors in the rat forebrain. II. Kainic acid receptors, Neuroscience. 35:45–51.PubMedGoogle Scholar
  79. Miller, M.W., 1988, Development of projection and local circuit neurons in neocortex, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 133–175.Google Scholar
  80. Minakami, R., Hirose, E., Yoshioka, K., Yoshimura, R., Misumi, Y, Sakaki, Y., Tohyama, M., Kiyama, H., and Sugiyama, H., 1992, Postnatal development of mRNA specific for a metabotropic glutamate receptor in the rat brain, Neurosci. Res. 15:58–63.PubMedGoogle Scholar
  81. Miyoshi, R., and Kito, S., 1990, Ontogeny of phorbol ester receptors in rat brain studied by in vitro autoradiography, J. Neural Transm. 81:41–51.Google Scholar
  82. Murrin, L. C, Gibbens, D. L., and Ferrer, J. R., 1985, Ontogeny of dopamine, serotonin and spirodecanone receptors in rat forebrain-An autoradiographic study, Dev. Brain Res. 23:91–109.Google Scholar
  83. Naeff, B., Schlumpf, M., and Lichtensteiger, W., 1992, Pre-and postnatal development of high-affinity PHJnicotine binding sites in rat brain regions: An autoradiographic study, Dev. Brain res:163-174.Google Scholar
  84. Naus, C. C. G., Miller, F. D., Morrison, J. H., and Bloom, F. E., 1988, Immunohistochemical and in situ hybridization analysis of the development of the rat somatostatin-containing neocortical neuronal system, J. Comp. Nenrol. 269:448–463.Google Scholar
  85. Nelson, D. L., Herbet, A., Adrien, J., Bockaert, J., and Hamon, M., 1980, Serotonin-sensitive adeny-late cyclase and PHjserotonin binding sites in the CNS of the rat. II. Respective regional and subcellular distributions and ontogenetic developments, Biochem. Pharmacol. 29:2455–2463.PubMedGoogle Scholar
  86. Nicolelis, M. A. L., Chapin, J. K., and Lin, R. C. S., 1991, Neonatal whisker removal in rats stabilizes a 1 transient projection from the auditory thalamus to the primary somatosensory cortex, Brain Res. 567:133–139.PubMedGoogle Scholar
  87. Norman, A. B., Eubanks, J. H., and Creese, I., 1989, Irreversible and quaternary muscarinic antagonists discriminate multiple muscarinic receptor binding sites in rat brain, J. Pharmacol. Exp. Ther. 248:1116–1122.PubMedGoogle Scholar
  88. O’Leary, D. D. M., 1989, Do cortical areas emerge from a protocortex? Trends Neurosci. 12:400–406.PubMedGoogle Scholar
  89. O’Leary, D. D. M., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons, Dev. Brain Res. 1:607–617.Google Scholar
  90. Palacios, J. M., Pazos, A., Dietl, M. M., Schlumpf, M., and Lichtensteiger, W., 1988, The ontogeny of brain neurotensin receptors studied by autoradiography, Neuroscience. 25:307–317.PubMedGoogle Scholar
  91. Parkinson, D., Kratz, K. E., and Daw, N. W., 1988, Evidence for a nicotinic component to the actions of acetylcholine in cat visual cortex, Exp. Brain Res. 73:553–568.PubMedGoogle Scholar
  92. Parnavelas, J. G., Papadopoulos, G. C, and Cavanagh, M. E., 1988, Changes in neurotransmitters during development, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 177–209.Google Scholar
  93. Parnavelas, J. G., Jeffery, G., Cope, J., and Davies, S. W., 1990, Early lesion of mystacial vibrissae in rats results in an increase of somatostatin-labelled cells in the somatosensory cortex, Exp. Brain Res. 82:658–662.PubMedGoogle Scholar
  94. Pelaprat, D., Dusart, I., and Peschanski, M., 1988, Postnatal development of cholecystokinin (CCK) binding sites in the rat forebrain and midbrain: An autoradiographic study, Dev. Brain Res. 44:119–132.Google Scholar
  95. Prusky, G. T., Arbuckle, J. M., and Cynader, M. S., 1988, Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex, Dev. Brain Res. 39:154–159.Google Scholar
  96. Rhoades, R. W., Bennett-Clarke, C. A., Chiaia, N. L., White, F. A., MacDonald, G. J., Haring, J. H., and Jacquin, M. F., 1990, Development and lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol. 293:190–207.PubMedGoogle Scholar
  97. Rice, F. L., Gomez, G, Barstow, G, Burnet, A., and Sands, P., 1985, A comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development, J. Comp. Neurol. 236:477–495.PubMedGoogle Scholar
  98. Robertson, R. T, Tijerina, A. A., and Gallivan, M. E., 1985, Transient patterns of acetylcholinesterase activity in visual cortex of the rat: Normal development and the effects of neonatal monocular enucleation, Dev. Brain Res. 21:203–214.Google Scholar
  99. Robinson, M. L., Hartgraves, M. D., and Fuchs, J. L., 1993, Autoradiographic localization of carbachol-induced phosphoinositide turnover in developing rat neocortex, Soc. Neurosci. Abstr. 19:1389.Google Scholar
  100. Ryugo, D. K., Ryugo, R., and Killackey, H. P., 1975, Changes in pyramidal cell density consequent to vibrissae removal in the newborn rat, Brain Res. 96:82–87.PubMedGoogle Scholar
  101. Sahin, M., Bowen, W. D., and Donoghue, J. P., 1992, Location of nicotinic and muscarinic cholinergic and (u-opiate receptors in rat cerebral neocortex: Evidence from thalamic and cortical lesions, Brain Res. 579:135–147.PubMedGoogle Scholar
  102. Sales, N., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C, 1989, Ontogeny of dopoaminergic D-2 receptors in the rat nervous system: Characterization and detailed autoradiographic mapping with [125I]iodosulpride, Neuroscience. 28:673–700.PubMedGoogle Scholar
  103. Sargent Jones, L., Ganger, L. L., Davis, J. N., Slotkin, T. A., and Bartolome, J. V., 1985, Postnatal development of brain alpha,-adrenergic receptors: In vitro autoradiography with [125I]HEAT in normal rats and rats treated with alpha-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase, Neuroscience. 15:1195–1202.Google Scholar
  104. Sato, M., Kiyama, H., and Tohyama, M., 1992, Different postnatal development of cells expressing mRNA encoding neurotensin receptor, Neuroscience. 48:137–149.PubMedGoogle Scholar
  105. Schlaggar, B. L., and O’Leary, D. D. M., 1992, An activity-dependent component of plasticity in the developing rat neocortex, Soc. Neurosci. Abstr. 18:57.Google Scholar
  106. Shaw, C, and Scarth, B. A., 1992, Age-dependent regulation of GABAA receptors in neocortex, Mol. BrainRes. 14:207–212.Google Scholar
  107. Shaw, C, Wilkinson, M., Cynader, M., Needier, M. C, Aoki, C, and Hall, S. E., 1986, The laminar distributions and postnatal development of neurotransmitter and neuromodulator receptors in cat visual cortex. Brain Res. Bull. 16:661–671.PubMedGoogle Scholar
  108. Shaw, C, Prusky, G., Van Huizen, F., and Cynader, M., 1989, Differential effects of quinolinic acid lesions on muscarinic acetylcholine receptors in cat visual cortex during postnatal development, Brain Res. Bull, 22:771–776.PubMedGoogle Scholar
  109. Shigemoto, R., Nakanishi, S., and Mizuno, N., 1992, Distribution of the mRNA for a metabotropic glutamate receptor (mGluRl) in the central nervous system: An in situ hybridization study in adult and developing rat, J. Cornp. Neural. 322:121–135.Google Scholar
  110. Sikich, L., Hickok, J. M., and Todd., R. D., 1990, 5-HT, A receptors control neurite branching during development, Dev. Brain Res. 56:269–274.Google Scholar
  111. Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature. 326:693–696.Google Scholar
  112. Smith, T. D., Annis, S. J., Ehlert, F. j., and Leslie, F. M., 1991, N-piIJmethylscopolamine labeling of non-Mj, non-M2 muscarinic receptor binding sites in rat brain, J. Pharmacol, Exp. Ther. 256:1173–1181.Google Scholar
  113. Snow, P. J., and Wilson, P., 1991, Plasticity and the mystacial vibrissae of rodents, in: Progress in Sensory Phyiology, Vol. 11 (H. Autrum, D. Ottoson, E. R. Perl, H. Shimazu, and W. D. Willis, eds.), Springer-Verlag, Berlin, pp. 58–116.Google Scholar
  114. Van der Zee, E. A., Streefland, C, Strosberg, A. D., Schröder, IL, and Luken, P. G. M., 1992, Visualization of cholinoceptive neurons in the rat neocortex: Colocalization of muscarinic and nicotinic acetylcholine receptors, Mol, Brain Res. 14:326–336.Google Scholar
  115. Van Huizen, F., Strosberg, A. D., and Cynader, M. S., 1988, Cellular and subcellular localisation of muscarinic acetylcholine receptors during postnatal development of cat visual cortex using immunocytochemical procedures, Dev. Brain Res. 44:296–301.Google Scholar
  116. Verley, R., and Axelrad, H., 1977, Organisation en “barils” des cellules de la couche IV du cortex SI chez la souris: Effets des lesions ou de la privation des vibrisses mystaciales, C. R. Acad, Sci. 284:1183–1185.Google Scholar
  117. Vizi, E. S., and Lábos, E., 1991, Non-synaptic interactions at presynaptic level, Prog. Neurobiol. 37:145–163.PubMedGoogle Scholar
  118. Vos, P., Kaufmann, D., Hand, P. J, and Wolfe, B. B., 1990, a2,-Adienergie receptors are colocalized and coregulated with “whisker barrels” in rat somatosensory cortex, Proc. Natl, Acad. Sci. USA. 87:5114–5118.Google Scholar
  119. Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., and Swanson, L. W., 1989, Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat, J. Cornp. Nenrol. 284:314–335.Google Scholar
  120. Wamsley, J. K., 1984, Autoradiographic localization of receptor sites in the cerebral cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 173–202.Google Scholar
  121. Waterhouse, B. D., and Woodward, D. J., 1980, Interaction of norepinephrine with cerebro-cortical activity evoked by stimulation of somatosensory afferent pathways, Exp. Neurol, 67:11–34.PubMedGoogle Scholar
  122. Waterhouse, B. D., Moises, H. C, and Woodward, D. J., 1980, Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters, Exp. Neurol, 69:30–49.PubMedGoogle Scholar
  123. Welker, E., Soriano, E., Dörfl, J., and Van der Loos, H., (1989a), Plasticity in the barrel cortex of the adult mouse: Transient increase of GAD-immunoreactivity following sensory stimulation, Exp. Brain Res. 78:659–664.PubMedGoogle Scholar
  124. Welker, E., Soriano, E., and Van der Loos, H., (1989b), Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity, Exp. Brain Res. 74:441–452.PubMedGoogle Scholar
  125. Weiler, W. L., and Johnson, J. I., 1975, Barrels in cerebral cortex altered by receptor disruption in newborn but not in five-day-old mice (Cricetidae and Muridae), Brain Res. 83:504–508.Google Scholar
  126. Welsh, F. A., Vannucci, R. C, and Brierley, J. B., 1982, Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain, J.Cereb. Blood Flow Metab. 2:221–228.PubMedGoogle Scholar
  127. White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.Google Scholar
  128. Williams, K., Hanna, J. L., and Molinoff, P. B., 1991, Developmental changes in the sensitivity of the jV-methyl-D-aspartate receptor to polyamines, Mol. Pharmacol. 40:774–782.PubMedGoogle Scholar
  129. Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.PubMedGoogle Scholar
  130. Wolff, J. R., 1978, Ontogenetic aspects of cortical architecture: Lamination, in: Architectonics of the Cerebral Cortex (M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 159–172.Google Scholar
  131. Wong-Riley, M. T. T., and Welt, C, 1980, Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice, Proc. Natl. Acad. Sci. USA. 77:2333–2337.PubMedGoogle Scholar
  132. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex, Brain Res. 17:205–242.PubMedGoogle Scholar
  133. Zifa, E., Hernandez, J., Fayolle, C, and Fillion, G., 1988, Postnatal development of 5-HT1 receptors: [3H]5-HT binding sites and 5-HT induced adenylate cyclase activations in rat brain cortex, Dev. Brain Res. 44:133–140.Google Scholar
  134. Zilles, K., zur Nieden, K., Schleicher, A., and Traber, J., 1990, A new method for quenching correction leads to revisions of data in receptor autoradiography, Histochemistry. 94:569–578.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jannon L. Fuchs
    • 1
  1. 1.Department of Biological SciencesUniversity of North TexasDentonUSA

Personalised recommendations