What Makes Subcortical Barrels?

Requisite Trigeminal Circuitry and Developmental Mechanisms
  • Theodore A. Henderson
  • Mark F. Jacquin
Part of the Cerebral Cortex book series (CECO, volume 11)

Abstract

The spatial arrangement of the mystacial vibrissae, or whiskers, on the rodent’s face is represented in most of the trigeminal (V) neuraxis by the patterning of afferent terminals, neuronal somata, and dendritic processes, which appears as an array of patches or cell rings (see Fig. 1 in Woolsey, 1990). In layer IV of the cerebral cortex, the cell aggregates are referred to as barrels (Woolsey and Van der Loos, 1970). In the ventroposteromedial thalamic nucleus, whisker-related cell groupings are referred to as barreloids (Van der Loos, 1976). In the V brainstem nuclear complex, analogous cell clusters are called barrelettes (Ma, 1991), and they occur in subnuclei principalis (PrV), interpolaris (SpVi), and caudalis (SpVc). In three dimensions, subcortical whisker-related patterns appear as columns of afferent terminals and postsynaptic neuronal processes running rostrocaudally in the V complex and obliquely in the thalamus. The afferent axons and cells within each column are best responsive to the somatotopically appropriate whisker.

Keywords

Nerve Growth Factor Ganglion Cell Trigeminal Ganglion Primary Afferents Nerve Growth Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, H. J., Blair, M. R., and Takman, B. H., 1976, the local anesthetic activity of tetrodotoxin alone and in combination with vasoconstrictors and local anesthetics, Anesth. Analg. 55:568–573.PubMedGoogle Scholar
  2. Al-Ghoul, W. M., and Miller, M. W., 1989, Migration of neurons to the trigemenal principal sensory nucleus of the rat, Soc. Neurosci. Abstr. 15:588.Google Scholar
  3. Angevine, J. B., Jr., 1970, lime of origin in the diencephalon of the mouse. An autoradiographic study, J. Comp. Nenrol. 139:129–188.CrossRefGoogle Scholar
  4. Arends, J. J. A., and Jacquin, M. F., 1993, Lucifer yellow staining in fixed brain slices: Optimal methods and compatibility with somatotopic markers in neonatal brain, J. Neurosci. Methods. 50:321–339.PubMedCrossRefGoogle Scholar
  5. Armstrong-James, M., 1975, The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex SI, J. Physiol. (London). 246:501–538.Google Scholar
  6. Arnett, D. W., 1978, Statistical dependence between neighboring retinal ganglion cells in goldfish, Exp. Brain Res. 32:49–53.PubMedCrossRefGoogle Scholar
  7. Arvidsson, J., 1982, Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP, J. Comp. Neural. 211:84–92.CrossRefGoogle Scholar
  8. Arvidsson, J., and Johansson, K., 1988, Changes in the central projection pattern of vibrissae innervating primary sensory neurons after peripheral nerve injury, Neurosci. Lett. 84:120–124.PubMedCrossRefGoogle Scholar
  9. Arvidsson, J., and Rice, F. L., 1991, Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat, J. Comp. Neural, 309:1–16.CrossRefGoogle Scholar
  10. Bates, C. A., and Killackey, H. P., 1985, The organization of the neonatal rat’s brainstem trigeminal complex and its role in the formation of central trigeminal patterns, J. Comp. Neural. 240:265–287.CrossRefGoogle Scholar
  11. Bates, C. A., Erzurumlu, R. S., and Killackey, H. P., 1982, Central correlates of peripheral alterations in the trigeminal system of the rat. III. Neurons of the principal sensory nucleus, Dev. Brain Res. 5:108–113.CrossRefGoogle Scholar
  12. Belford, G. R., and Killackey, IT P., (1979a), Vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Camp. Neural. 183:305–322.CrossRefGoogle Scholar
  13. Belford, G. R., and Killackey, H. P., (1979b), The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Comp. Neural. 188:63–74.CrossRefGoogle Scholar
  14. Belford, G. R., and Killackey, H. P., 1980, The sensitive period in the development of the trigeminal system of the neonatal rat, J. Comp. Neural. 193:335–350.CrossRefGoogle Scholar
  15. Bennett-Clarke, C. A., Chiaia, N. L., Jacquin, M. F., and Rhoades, R. W., Parvalbumin and calbinin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brain stem complex of the adult rat, J. Camp. Neural. 320:323–338.Google Scholar
  16. Blue, M. E., Erzurumlu, R. S., and Jhaveri, S., 1991, A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex, Cereb. Cortex. 1:380–389.PubMedCrossRefGoogle Scholar
  17. Born, D. E., 1986, The role of neuronal activity in regulating the structure and function of auditory neurons, Ph.D. dissertation, University of Virginia.Google Scholar
  18. Born, D. E., and Rubel, E. W., 1988, Afferent influences on brain stem auditory nuclei of the chicken: Presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons, J. Neurosci. 8:901–919.PubMedGoogle Scholar
  19. Bothwell, M., 1991, Tissue localization of nerve growth factor and nerve growth receptors, Curr. Tap. Microbio. Immunol. 165:55–70.CrossRefGoogle Scholar
  20. Brown, A. G., 1981, Organization in the Spinal Cord, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  21. Callaway, E. M., Soha, J. M., and Van Essen, D. C, 1987, Competition favouring inactive over active motor neurons during synapse elimination, Nature. 328:422–426.PubMedCrossRefGoogle Scholar
  22. Carmignoto, C, Comelli, M. C, Candeo, P., Cavicchioli, L., Yan, Q., Merighi, A., and Maffei, L., 1991, Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina, Exp. Neurol. 111:302–311.PubMedCrossRefGoogle Scholar
  23. Carroll, S. L., Silos-Santiago, I., Frese, S. E., Ruit, K. G., Milbrandt, J., and Snider, W. D., 1992, Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivaton in utero, Neuron 2:779–788.CrossRefGoogle Scholar
  24. Carvell, G. E., and Simons, D. J., 1990, Biometrie analysis of vibrissal tactile discrimination in the rat, J. Neurosa. 10:2638–2648.Google Scholar
  25. Catalano, S. M., Robertson, R. T., and Killackey, H. P., 1991, Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat, Proc. Natl. Acd. Sci. USA. 88:2999–3003.CrossRefGoogle Scholar
  26. Chandler, C. E., Parsons, L. M., Hosang, M., and Shooter, E. M., 1984, A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells, J. Biol. Chem. 259:6882–6889.PubMedGoogle Scholar
  27. Chiaia, N. L., Hess, P. R., Mitsuteru, H., and Rhoades, R. W., (1987a), Morphological characteristics of low-threshold primary afferents in the trigeminal subnuclei interpolaris and caudalis (the medullary dorsal horn) of the golden hamster, J. Comp. Neurol. 264:527–546.PubMedCrossRefGoogle Scholar
  28. Chiaia, N. L., Hess, P. R., and Rhoades, R. W., (1987b), Preventing degeneration of infraorbital axons does not alter the ganglionic or transganglionic consequences of neonatal transection of this trigeminal branch, Dev. Brian Res. 36:75–88.CrossRefGoogle Scholar
  29. Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W., 1991, Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cytochrome oxidase pattern in the trigeminal brainstem complex, J. Comp. Neurol. 303:600–616.PubMedCrossRefGoogle Scholar
  30. Chiaia, N. L., Bennett-Clarke, C. A., Eck, M., White, F. A, Crissman, R. S., and Rhoades, R. W., (1992a), Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons, J. Neurosci. 12:62–76.PubMedGoogle Scholar
  31. Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W., (1992b), Differential effects of peripheral damage on vibrissa-related patterns in trigeminal nucleus principalis, subnucleus interpolaris, and subnucleus caudalis, Neuroscience. 49:141–156.PubMedCrossRefGoogle Scholar
  32. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W., (1992c), Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in rat’s somatosensory cortex, Dev. Brain Res. 66:244–250.CrossRefGoogle Scholar
  33. Chiaia, N. L., Bauer, W. R., and Rhoades, R. W., 1993, Prenatal development of the receptive fields of individual trigeminal ganglion cells in the rat, J. Neurophysiol. 69:1171–1180.PubMedGoogle Scholar
  34. Cline, H. T., Debski, E. A., and Constantine-Paton, M., 1987, N-Methyl-D-aspartate receptor antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA. 84:4342–4345.PubMedCrossRefGoogle Scholar
  35. Constantine-Paton, M., Cline, H. T., and Debski, E. A., 1989, Neural activity, synaptic convergence, and synapse stabilization in the developing central nervous system, in: The Assembly of the Nervous System (L. T. Landmesser, ed.), Liss, New York, pp. 279–300.Google Scholar
  36. Cooper, N. G. F., and Steindler, D. A., 1986, Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol. 249:157–169.PubMedCrossRefGoogle Scholar
  37. Cordon-Cardo, C, Tapley, P., Jing, S., Nanduri, V., O’Rourke, E., Lambelle, F., Kovary, K., Klein, R., Jones, K. R., Rechardt, L. F., and Barbacid, M., 1991, The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3, Cell. 66:173–183.PubMedCrossRefGoogle Scholar
  38. Crandall, J. E., and Herrup, K., 1990, Patterns of cell lineage in the cerebral cortex reveal evidence for developmental boundaries, Exp. Neurol. 109:1310–139.CrossRefGoogle Scholar
  39. Crespo, D., O’Leary, D. D. M., and Cowan, W. M., 1985, Changes in the number of optic nerve fibers during late prenatal and postnatal development in the albino rat, Dev. Brian Res. 19:129–134.CrossRefGoogle Scholar
  40. Davies, A. M., 1987, Molecular and cellular aspects of patterning sensory neurone connections in the vertebrate nervous system, Development. 101:185–208.PubMedGoogle Scholar
  41. Davies, A. M., 1988, Role of neurotrophic factors in development, Trends Cenet. 4:139–143.CrossRefGoogle Scholar
  42. Davies, A. M., 1988b, The trigeminal system: An advantageous experimental model for studying neuronal development, Development 103(Suppl.):175–183.PubMedGoogle Scholar
  43. Davies, A. M., and Lumsden, A., 1984, Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion, J.Comp. Neurol. 223:124–137.PubMedCrossRefGoogle Scholar
  44. Davies, A. M., and Lumsden, A. G. S., 1986, Fasciculation in the early mouse trigeminal nerve is not ordered in relation to the emerging pattern of whisker follicles, J. Comp. Neurol. 253:13–24.PubMedCrossRefGoogle Scholar
  45. Davies, A. M., Lumsden, A. G. S., Slavkin, H. C, and Burnstock, C, 1981, Influence of nerve growth factor on the embroyonic mouse trigeminal ganglion in culture, Dev. Neurosci. 4:150–156.PubMedCrossRefGoogle Scholar
  46. Davies, A. M., Bandtlow, C, Heumann, R., Korsching, S., Rohrer, H., and Thoenen, H., 1987, Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor, Nature. 326:353–358.PubMedCrossRefGoogle Scholar
  47. Dawson, D. R., and Killackey, H. P., 1985, Distinguishing topography and somatotopy in the thalamocortical projections of the developing rat, Dev. Brain Res. 17:309–313.CrossRefGoogle Scholar
  48. DiStefano, P. S., and Johnson, E. M. Jr., 1988, Identification of a truncated form of the nerve growth factor receptor, Proc. Natl. Acad. Sci. USA. 85:270–274.PubMedCrossRefGoogle Scholar
  49. Dodd, J., and Jessell, T. M., 1988, Axon guidance and the patterning of neuronal projections in vertebrates, Science 242:692–699.PubMedCrossRefGoogle Scholar
  50. Doherty, D. W., Killackey, H. P., and Jacquin, M. F., 1992, Receptive field synthesis in rat nucleus principalis: Spinal trigeminal contributions, Soc. Neurosci. Abstr. 18:1190.Google Scholar
  51. Durham, D., and Woolsey, T. A., 1978, Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex, J. Comp. Neurol. 178:629–644.PubMedCrossRefGoogle Scholar
  52. Durham, D., and Woolsey, T. A., 1984, Effects of neonatal whisker lesions on mouse central trigeminal pathways, J. Comp. Neurol. 223:424–447.PubMedCrossRefGoogle Scholar
  53. Eisele, L. L., and Schmidt, J. T., 1988, Activity sharpens the regenerating retinotectal projection in goldfish; Sensitive period for strobe illumination and lack of effect on synaptogenesis and on ganglion cell receptive field properties, J. Neurobiol. 19:395–411.PubMedCrossRefGoogle Scholar
  54. Enfors, P., Merlio, J.-P., and Persson, H., 1992, Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development, Eur. J. Neurosci. 4:1140–1158.CrossRefGoogle Scholar
  55. Erzurumlu, R. S., and Ebner, F. F., 1988, Maintenance of discrete somatosensory maps in subcortical relay nuclei is dependent on an intact sensory cortex, Dev. Brain Res. 44:302–308.CrossRefGoogle Scholar
  56. Erzurumlu, R. S., and Jhaveri, S., 1990, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Dev. Brain Res. 56:229–234.CrossRefGoogle Scholar
  57. Erzurumlu, R. S., and Jhaveri, S., 1992, Trigeminal ganglion cell processes are spatially ordered prior to differentiation of the vibrissa pad, J. Neurosci. 12:3946–3955.PubMedGoogle Scholar
  58. Erzurumlu, R. S., and Killackey, H. P., 1983, Development of order in the rat trigeminal system, J. Comp. Neurol. 213:365–380.PubMedCrossRefGoogle Scholar
  59. Fawcett, J. W., and O’Leary, D. D. M., 1985, The role of electrical activity in the formation of topographic maps in the nervous systems, Trends Neurosci. 8:201–206.CrossRefGoogle Scholar
  60. Fawcett, J. W., O’Leary, D. D. M., and Cowan, W. M., 1984, Activity and the control of ganglion cell death in the rat retina, Proc. Natl Acad. Sci. USA. 81:5589–5593.PubMedCrossRefGoogle Scholar
  61. Forbes, D. J., and Welt, C, 1981, Neurogenesis in the trigeminal ganglion of the albino rat: A quantitative autoradiographic study, J. Comp. Neurol. 199:133–147.PubMedCrossRefGoogle Scholar
  62. Frank, E., and Mendelson, B., 1990, Specification of synaptic connections between sensory and motor neurons in the developing spinal cord, Neurobiol. 21:33–50.CrossRefGoogle Scholar
  63. Fyffe, R. E. W., Cheema, S., and Rustioni, A., 1986, Intracellular staining study of the feline cuneate nucleus. I. Terminal patterns of primary afferent fibers, J. Neurophysioi. 56:1268–1283.Google Scholar
  64. Galli, L., and Maffei, L., 1988, Spontaneous impulse activity of rat retinal ganglion cells in prenatal life, Science. 242:90–91.PubMedCrossRefGoogle Scholar
  65. Gibson, J. M., 1987, A quantitative comparison of stimulus-response relationships of vibrissaactivated neurons in subnuclei oralis and interpolaris of the rat’s trigeminal sensory complex: Receptive field properties and threshold determinations, Somatosens. Res. 5:135–155.PubMedCrossRefGoogle Scholar
  66. Glass, D. J., and Lynch, G. R., 1982, Evidence for a brain site of melatonin action in the white-footed mouse, Peromyscus leucopus, Neuroendocrinology. 34:1–6.CrossRefGoogle Scholar
  67. Goedert, M., Otten, U., Hunt, S. P., Bond, A., Chapin, D., Schlumpf, M., and Lichensteiger, W., 1984, Biochemical and antomical effects of antibodies against nerve growth factor on developing rat sensory ganglia, Proc. Natl. Acad. Sci. USA. 81:1580–1584.PubMedCrossRefGoogle Scholar
  68. Goldowitz, D., 1987, Cell partitioning and mixing in the formaion of the CNS: Analysis of the cortical somatosensory barrels in chimeric mice, Dev. Brain Res. 35:1–9.CrossRefGoogle Scholar
  69. Gorin, P. D., and Johnson, E. M., Jr., 1979, Experimental autoimmune model of nerve growth factor deprivation: Effects on developing peripheral sympathetic and sensory neurons, Proc. Natl. Acad. Sci. USA. 76:5382–5386.PubMedCrossRefGoogle Scholar
  70. Green, S. H., Rydel, R. E., Connolly, J. L., and Greene, L. A., 1986, PC12 cell mutants that possess low-but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor, J. Cell Biol. 102:830–843.PubMedCrossRefGoogle Scholar
  71. Greenough, W. T, and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory xortex, Dev. Brain Res. 43:148–152.CrossRefGoogle Scholar
  72. Hamburger, V., Brunso-Bechtold, J. K., and Yip, J. W., 1981, Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor, J. Neurosci. 1:60–71.PubMedGoogle Scholar
  73. Haring, J. H., Henderson, T. A., and Jaquin, M. F., 1990, Principalis-or parabrachial-projecting spinal trigeminal neurons do not stain for GAD or GAB A, Somatosens. Mot. Res. 7:391–398.PubMedCrossRefGoogle Scholar
  74. Harris, R. M., and Woolsey, T. A., 1981, Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage, J. Comp. Neurol. 196:357–376.PubMedCrossRefGoogle Scholar
  75. Harris, W. A., 1980, The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders, J. Comp. Neurol. 194:303–317.PubMedCrossRefGoogle Scholar
  76. Harris, W. A., 1984, Axonal pathfinding in the absence of normal pathways and impluse activity, J. Neurosci. 4:1153–1162.PubMedGoogle Scholar
  77. Hayashi, H., 1980, Distribution of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase, Brain Res. 183:442–446.PubMedCrossRefGoogle Scholar
  78. Hayashi, H., 1982, Differential terminal distribution of single large cutaneous fibers in the spinal trigeminal nucleus and in the cervical dorsal horn, Brain Res. 244:173–177.PubMedCrossRefGoogle Scholar
  79. Hayashi, H., 1985, Morphology of central terminations of intra-axonally stained large, myelinated primary afferent fibers from facial skin in the rat, J. Comp. Neurol. 237:195–215.PubMedCrossRefGoogle Scholar
  80. Hempstead, B. L., Patil, N., Olson, K., and Chao, M. V., 1988, Molecular analysis of the nerve growth factor receptor, Cold Spring Harbor Symp. Quant. Biol. 53:477–485.PubMedCrossRefGoogle Scholar
  81. Henderson, T. A., Osborne, P. A., Srisumrid, R., Johnson, E. M. Jr., Woolsey, T. A., and Jacquin, M. F., 1992a, Why do whisker-related patterns fail to develop in the brain stem after fetal NGF injection? Soc. Neurosci. Abstr. 18:1098.Google Scholar
  82. Henderson, T. A., Woolsey, T. A., and Jaquin, M. F. (1992b), Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat, Dev. Brain Res. 66:146–152.CrossRefGoogle Scholar
  83. Henderson, T. A., Rhoades, R. W., Bennett-Clarke, C. A., Osborne, P. A., Johnson, E. M. Jr., and Jacquin, M. F., 1993, NGF augmentation rescues trigeminal ganglion and prinicpalis neurons, but not brain stem or cortical whisker patterns, after infraorbital nerve injury at birth, J.Comp. Neurol. 336:243–260.PubMedCrossRefGoogle Scholar
  84. Heuer, J. G., Fatemie-Nainie, S., Wheeler, E. F., and Bothwell, M., 1990, Structure and developmental expression of the chicken NGF receptor, Dev. Biol. 137:287–304.PubMedCrossRefGoogle Scholar
  85. Hobart, N., Miller, M. W., and Jacquin, M. F., 1989, Dendritic regression in developing rat trigeminal nucleus principalis, Soc. Neurosci. Abstr. 15:1332.Google Scholar
  86. Hosang, M., and Shooter, E. M., 1985, Molecular characteristics of nerve growth factor receptors on PC 12 cells, J.Biol. Chem. 260:655–662.PubMedGoogle Scholar
  87. Hruska, R. E., 1986, elevation of striatal dopamine receptors by estrogen: Dose and time studies, J. Neurochem. 47:1909–1915.CrossRefGoogle Scholar
  88. Ibánez, C. F., Ebendal, T., Barbany, G., Murray-Rust, J., Blundell, T. L., and Persson, H., 1992, Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product, Cell. 69:329–341.PubMedCrossRefGoogle Scholar
  89. Jacquin, M. F., and Hobart, N., 1991, Daily whisker trimming from birth mimics nerve injuryinduced response alterations in trigeminal second-order cells, Soc. Neurosci. Abstr. 17:1128.Google Scholar
  90. Jacquin, M. F., and Rhoades, R. W., 1983, Central projections of the normal and “regenerate” infraorbital nerve in adult rats subjected to neonatal infraorbital lesions: A transganglionic horseradish peroxidase study, Brain Res. 269:137–144.PubMedCrossRefGoogle Scholar
  91. Jacquin, M. F., and Rhoades, R. W., 1985, Effects of neonatal infraorbital lesions upon central trigeminal primary afferent projections in rat and hamster, J. Comp. Neurol. 235:129–143.PubMedCrossRefGoogle Scholar
  92. Jacquin, M. F., and Rhoades, R. W., 1987, Development and plasticity in hamster trigeminal primary afferent projections, Dev. Brain Res. 31:161–175.CrossRefGoogle Scholar
  93. Jacquin, M. F., and Rhoades, R. W, 1990, Cell structure and response properties in the trigeminal subnucleus oralis, Somatosens. Mot. Res. 7:265–288.PubMedCrossRefGoogle Scholar
  94. Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., 1984, Axon arbors of functionally distinct whisker afferents are similar in medullary dorsal horn, Brain Res. 298:175–180.PubMedCrossRefGoogle Scholar
  95. Jacquin, M. F., Renehan, W. E., Klein, B. G., Mooney, R. D., and Rhoades, R. W., (1986a), Functional consequences of neonatal infraorbital nerve section in rat trigeminal ganglion, J.Neurosci. 6:3706–3720.PubMedGoogle Scholar
  96. Jacquin, M. F., Renehan, W. E., Mooney, R. D., and Rhoades, R. W., 1986b, Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents, J Neurophysiol. 55:1153–1186.PubMedGoogle Scholar
  97. Jacquin, M. F., Woerner, D., Szczepanik, A. M., Riecker, V., Mooney, R. D., and Rhoades, R. W., (1986c), Structure-function relationships in rat brainstern subnucleus interpolaris. I. Vibrissa primary afferents, J. Comp. Neurol. 243:266–279.PubMedCrossRefGoogle Scholar
  98. Jacquin, M. F., Golden, J. P., and Panneton, W. M., (1988a), Structure and function of barrel “precursor” cells in trigeminal nucleus principalis, Dev. Brain Res. 43:309–314.CrossRefGoogle Scholar
  99. Jacquin, M. F., Stennett, R. A., Renehan, W. E., and Rhoades, R. W., (1988b), Structure-function relationships in rat brainstem subnucleus interpolaris. II. Low and high threshold trigeminal primary afferents, J. Comp. Neurol. 267:107–130.PubMedCrossRefGoogle Scholar
  100. Jacquin, M. F., Barcia, M., and Rhoades, R. W., (1989a), Structure-function relationships in rat brainstem subnucleus interpolis. IV. Projection neurons, J. Comp. Neurol. 282:45–62.PubMedCrossRefGoogle Scholar
  101. Jacquin, M. F., Golden, J. P., and Rhoades, R. W., (1989b), Structure-function relationships in rat brainstem subnucleus interpolaris. III. Local circuit neurons, J. Comp. Neurol. 282:24–44.PubMedCrossRefGoogle Scholar
  102. Jacquin, M. F., Chiaia, N. L., Haring, J. H., and Rhoades, R. W., (1990a), Intersubnuclear connections within the rat trigeminal brainstem complex, Somatosens. Mot. Res. 7:399–420.PubMedCrossRefGoogle Scholar
  103. Jacquin, M. F., Wiegand, M., and Renehan, W. E., (1990b), Structure-function relationships in rat brainstem subnucleus interpolaris. VIII. Gortical inputs, J. Neurophysiol. 64:3–27.PubMedGoogle Scholar
  104. Jacquin, M. F., Hu, J. W., Sessle, B. J., Renehan, W. E., and Waite, P. M. E., 1992, Intra-axonal neurobiotin injection rapidly stains the long-range projections of identified trigeminal primary afferents in vivo: Comparisons with HRP and PHA-L, J. Neurosci. Methods. 45:71–86.PubMedCrossRefGoogle Scholar
  105. Jacquin, M. F., McCasland, J. S., Henderson, T. A., Rhoades, R. W., and Woolsey, T. A., (1993a), 2DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system, J. Comp. Neurol. 332:38–58.PubMedCrossRefGoogle Scholar
  106. Jacquin, M. F., Zahm, D. S., Henderson, T. A., Golden, J. P., Johnson, E. M., Renehan, W. E., and Klein, B. G., 1993b, Structure-function relationships in rat brain stem subnucleus interpolaris. X. Mechanisms underlying enlarged spared whisker projections after infraorbital nerve injury at birth, J. Neurosci. 13:2946–2964.PubMedGoogle Scholar
  107. Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut, J. Neurosci. 7:3544–3553.PubMedGoogle Scholar
  108. Johnson, D., Lanahan, A., Buck, C. R., Sehgal, A., Morgan, C, Mercer, E., Bothwell, M., and Chao, M., 1986, Expression and structure of the human NFG receptor, Cell. 47:545–554.PubMedCrossRefGoogle Scholar
  109. Johnson, E. M. Jr., Gorin, P. D., Brandeis, L. D., and Pearson, J., Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor, Science 210:916-918.Google Scholar
  110. Johnson, E. M. Jr., Osborne, P. A., and Taniuchi, M., 1989, Destruction of sympathetic and sensory neurons in the devloping rat by a monoclonal antibody against the nerve growth factor (NGF) receptor, Brain Res. 478:166–170.PubMedCrossRefGoogle Scholar
  111. Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V., and Parada, L. F., 1991, The trk proto-oncogene product: A signal transducing receptor for nerve growth factor, Science. 252:554–558.PubMedCrossRefGoogle Scholar
  112. Killackey, H. P., and Fleming, K., 1985, The role of the principal sensory nucleus in central trigeminal pattern formation, Dev. Brian Res. 22:141–145.CrossRefGoogle Scholar
  113. Killackey, H. P., Jacquin, M. F., and Rhoades, R. W., 1990, Development of somatosensory system structures, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.)Wiley, New York, pp. 403–429.Google Scholar
  114. Klein, B. G., Renehan, W. E., Jacquin, M. F., and Rhoades, R. W., 1988, Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissa follicle nerves in the adult rat, J. Comp. Neurol. 268:469–488.PubMedCrossRefGoogle Scholar
  115. Klein, R., Jing, S. A., Nanduri, V., O’Rourke, E., and Barbacid, M., (1991a), The trk proto-oncogene encodes a receptor for nerve growth factor, Cell. 65:189–197.PubMedCrossRefGoogle Scholar
  116. Klein, R., Nanduri, V., Jing, S. A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C, Jones, K. R., Rechardt, L. F., and Barbacid, M., (1991b), The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3, Cell. 66:395–403.PubMedCrossRefGoogle Scholar
  117. Koester, S. E., and O’Leary, D. D. M., 1992, Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern, J. Neurosci. 12:1382–1393.PubMedGoogle Scholar
  118. Koralek, K. A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.PubMedCrossRefGoogle Scholar
  119. Lamballe, F., Klein, R., and Barbacid, M., 1991, trkC, a new number of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3, Cell. 66:967–979.PubMedCrossRefGoogle Scholar
  120. Langer, R., and Folkman, J., 1976, Polymers for the sustained release of proteins and other macromolecules, Nature 263:797–800.PubMedCrossRefGoogle Scholar
  121. Lawson, S. N., Caddy, K. W. T., and Biscoe, T. J. 1974, Development of rat dorsal root ganglion neurones. Studies of cell birthdays and changes in mean cell diameter, Cell Tissue Res. 153:399–413.PubMedCrossRefGoogle Scholar
  122. LeDouarin, N.M., Fontaine-Perus, J., and Couly, G., 1986, Cephalic extodermal placodes and neurogenesis, Trends Neurosci. 9:175–180.CrossRefGoogle Scholar
  123. Lee, K. J., and Woolsey, T. A., 1975, A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse, Brain Res. 99:349–353.PubMedCrossRefGoogle Scholar
  124. Lee, P. H., Weaver, W. R., Henderson, T. A., Sonty, R. V., Woolsey, T. A., and Jacquin, M. F., 1991, Activity-dependent competitive interactions in the developing whisker-barrel neuraxis, Soc. Neurosci. Abstr. 17:10.Google Scholar
  125. Lee, P. H., Henderson, T. A., Weaver, W. R., Connors, N. A., Woosley, T. A., and Jacquin, M. F., 1992, Does activity-based competition play a role in barrel development in hamster? Soc. Neurosci. Abstr. 18:1098.Google Scholar
  126. Levi-Montalcini, R., 1987, The nerve growth factor 35 years later, Science. 237:1154–1162.PubMedCrossRefGoogle Scholar
  127. Lichtenstein, S. H., Carvell, G. E., and Simons, D. J., 1990, Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions, Somatosens. Mot. Res. 7:47–65.PubMedCrossRefGoogle Scholar
  128. Lindsay, R. M., and Harmar, A. J., 1989, Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons, Nature. 337:362–364.PubMedCrossRefGoogle Scholar
  129. Liu, D. W., and Westerfield, M., 1990, The formation of terminal fields in the absence of competitive interactions among primary motoneurons in the zebrafish, J. Neurosci. 10:3947–3959.PubMedGoogle Scholar
  130. Luo, P. F., Wang, B. R., Peng, Z. Z., and Li, J. S., 1991, Morphological characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat: An intracellu-lar horseradish peroxidase labeling study, J. Comp. Neurol. 303:286–299.PubMedCrossRefGoogle Scholar
  131. Ma, P.-K. M., 1991, The barrelettes — architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization, J. Comp. Neurol. 309:161–199.PubMedCrossRefGoogle Scholar
  132. Ma, P.-K. M., and Woolsey, T. A., 1984, Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse, Brain Res. 306:374–379.PubMedCrossRefGoogle Scholar
  133. Maffei, L., and Galli-Resta, L., 1990, Correlation in the discharges of neighboring retinal ganglion cells during prenatal life, Proc. Natl. Acad, Sci. USA. 87:2861–2864.CrossRefGoogle Scholar
  134. Maisonpierre, P. C, Belluscio, L., Squinto, S., Ip, N. Y., Furth, M. E., Lindsay, R. M., and Yan-copoulos, G. D., 1990, Neurotrophin-3: A neurotrophic factor related to NGF and BDNF, Science. 247:1446–1451.PubMedCrossRefGoogle Scholar
  135. Martin-Zanca, D., Barbacid, M., and Parada, L. F., 1990, Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development, Genes Dev. 4:683–694.PubMedCrossRefGoogle Scholar
  136. Mastronarde, D. N., 1989, Correlated firing of retinal ganglion cells, Trends Neurosci. 2:75–80.CrossRefGoogle Scholar
  137. Mayer, N., Lembeck, F., Goedert, M., and Otten, U., 1982, Effects of antibodies against nerve growth factor on the postnatal development of substance P-containing sensory neurons, Neurosci. Lett. 29:47–52.PubMedCrossRefGoogle Scholar
  138. Meister, M., Wong, R. O. L., Baylor, D. A., and Shatz, C. J., 1990, Synchronous bursting activity in ganglion cells of the developing mammaliam retina, Invest. Ophthalmol. Vis. Sci. (Suppl.) 31: 115.Google Scholar
  139. Meister, M., Wong, R. O. L., Baylor, D. A., and Shatz, C. J., 1991, Synchronous bursts of action potentials in gagnlion cells of the develping mammalian retina, Science. 252:939–943.PubMedCrossRefGoogle Scholar
  140. Mendelson, B., and Frank, E., 1991, Specific monosynaptic sensory-motor connections form in the absence of patterned neural activity and motoneuronal cell death, J.Neurosci. 11:1390–1403.PubMedGoogle Scholar
  141. Meyer, R. L., 1983, Tetrodotoxin inhibits the formation of refined retinotopography in goldfish, Dev. Brain Res. 6:293–298.CrossRefGoogle Scholar
  142. Millecchia, R. J., Pubols, L. M., Sonty, R. V., Culberson, J. L. Gladfelter, W. E., and Brown, P. B., 1991, Influence of map scale on primary afferent terminal field geometry in cat dorsal horn, J. Neurophysiol. 66:696–704.PubMedGoogle Scholar
  143. Miller, M. W, 1988, Effects of prenatal exposure to ethanol on the development of the cerebral cortex: I. Neuronal gestation, Alcoholism. 12:440–449.PubMedGoogle Scholar
  144. Miller, M. W, and Müller, S. J., 1989, Structure and histogenesis of the principal sensory nucleus of the trigeminal nerve: Effects of prenatal exposure to ethanol, J.Comp. Neurol. 282:570–580.PubMedCrossRefGoogle Scholar
  145. Nichols, D. H., 1986, Mesenchyme formation from the trigeminal placodes of the mouse embryo, Am. J. Anat. 176:19–31.PubMedCrossRefGoogle Scholar
  146. Nomura, S., Itoh, K., Sugimoto, T., Yasui, Y., Kamiya, H., and Mizuno, N., 1986, Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat, J.Camp. Neural. 253:121–133.CrossRefGoogle Scholar
  147. Olavarria, J., Van Sluyters, R. C, and Killackey, H. P., 1984, Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex, Brian Res. 291:364–368.CrossRefGoogle Scholar
  148. O’Leary, D. D. M., Fawcett, J. W., and Cowan, W. M., 1986, Topographic targeting errors inn the reinocollicular projection and their elimination by selective ganglion cell death. J. Neurosci. 6:3692–3705.PubMedGoogle Scholar
  149. Olson, M. D., and Meyer, R. L., 1991, The effect of TTX-activity blockade and total darkness on the formation of retinotopy in the goldfish retinotectal projection, J. Comp. Neurol. 303:412–423.PubMedCrossRefGoogle Scholar
  150. Oppenheim, R. W., 1985, Naturally occurring cell death during neural development, Trends Neurosci. 8:487–493.CrossRefGoogle Scholar
  151. Otten, U., Goedert, M., Mayer, N., and Lembeck, F., 1980, Requirement of nerve growth factor for development of substance P-containing sensory neurones, Nature. 287:158–159.PubMedCrossRefGoogle Scholar
  152. Pasic, T. R., and Rubel, E. W., 1989, Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical actvity in gerbils, J. Comp. Neurol. 283:474–480.PubMedCrossRefGoogle Scholar
  153. Purves, D., 1986, The trophic theory of neural connections, Trends Neurosci. 9:486–489.CrossRefGoogle Scholar
  154. Rakic, P., 1988, Specification of cerebral cortical areas, Sicence. 241:170–176.CrossRefGoogle Scholar
  155. Rakic, P., and Riley, K. P., 1983, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science. 219:1441–1444.PubMedCrossRefGoogle Scholar
  156. Rapisardi, S. C, Chow, K. L., and Mathers, L. H., 1975, Ontogenesis of receptive field characteristics in the dorsal lateral geniculate nucleus of the rabbit, Exp. Brain Res. 22:295–305.PubMedCrossRefGoogle Scholar
  157. Reh, T. A., and Constantine-Paton, M., 1985, Eye-specific segregation requires neural activity in three-eyed Rana pipiens, J. Neurosci. 5:1132.PubMedGoogle Scholar
  158. Renehan, W. E., and Munger, B. L., 1986, Degeneration and regeneration of peripheral nerve in the rat trigeminal system. I. Identification and characterization of the multiple afferent innervation of the mystacial vibrissae, J. Comp. Neurol. 246:129–146.PubMedCrossRefGoogle Scholar
  159. Renehan, W. E., Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., 1986, Structure-function relationships in rat medullary and cervical dorsal horns. II. Medullary dorsal horn cells, J. Neurophysiol. 55:1187–1201.PubMedGoogle Scholar
  160. Renehan, W. E., Crissman, R. S., and Jacquin, M. F., 1994, Primary afferent plasticity following partial denervation of the trigeminal brainstem nuclear complex in the postnatal rat, J.Neurosci., 14:721–739.PubMedGoogle Scholar
  161. Rhoades, R. W., Belford, G. R., and Killackey, H. P., 1987, Receptive-field properties of rat ventral posterier medial neurons before and after selective kainic acid lesions of the trigeminal brainstem complex, J. Neurophysiol. 57:1577–1600.PubMedGoogle Scholar
  162. Rhoades, R. W., Bennett-Clarke, C. A., Chiaia, N. L., White, F. A., Macdonald, G. J., Haring, J. H., and Jacquin, M. F., (1990a), Development and lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol. 293:190–207.PubMedCrossRefGoogle Scholar
  163. Rhoades, R. W., Chiaia, N. L., and Macdonald, G. J., (1990b), Topographic organization of the peripheral projection of the trigeminal ganglion in the fetal rat, Somatosens. Mot. Res. 7:67–84.PubMedCrossRefGoogle Scholar
  164. Rhoades, R. W., Killackey, H. P., Chiaia, N. L., and Jacquin, M. F., 1990c, Physiological development and plasticity of somatosensory neurons, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 431–459.Google Scholar
  165. Rhoades, R. W, Enfiejian, H. L., Macdonald, G. J., Miller, M. W., McCann, P., and Goddard, C. M., 1991, Birthdates of trigeminal ganglion cells contributing axons to the infraorbital nerve and specific vibrissal follicles in the rat, J. Comp. Neurol. 307:163–175.PubMedCrossRefGoogle Scholar
  166. Rice, F. L., 1975, The development of the primary somatosensory cortex in the mouse: (1) A Nissl study of the ontogenesis of the barrels and the barrel field, (2) A quantitative autoradiographic study of the time of origin and pattern of migration of neuroblasts in area SI, Ph. D dissertation, Johns Hopkins University.Google Scholar
  167. Rice, F. L., and Van der Loos, H., 1977, Development of the barrels and barrel field in the somatosensory cortex of the mouse, J. Comp. Neurol., 171:545–560.PubMedCrossRefGoogle Scholar
  168. Rich, K. M., Luszczynski, J. R., Osborne, P. A., and Johnson, E. M., Jr., 1987, Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury, J.Neurocytol. 16:261–268.PubMedCrossRefGoogle Scholar
  169. Ritter, A. M., Lewin G. R., Kremer, N. E., and Mendell, L. M., 1991, Requirement for nerve growth factor in the development of myelinated nociceptors in vivo, Nature. 350:500–502.PubMedCrossRefGoogle Scholar
  170. Robert, E. D., and Oester, Y. T., 1970, Nerve impulses and trophic effect. Absence of fibrillation after prolonged and reversible conduction block, Arch. Neurol. 22:57–63.PubMedCrossRefGoogle Scholar
  171. Rodriguez-Tébar, A., Dechant, G., and Barde, Y.-A., 1990, Binding of brain-derived neurotrophic factor to the nerve growth factor receptor, Neuron. 4:487–492.PubMedCrossRefGoogle Scholar
  172. Rubel, E. W., Hyson, R. L., and Durham, D., 1990, Afferent regulation of neurons in the brain stem auditory system, J.Neurobiol. 21:169–196.PubMedCrossRefGoogle Scholar
  173. Ruit, K. G., Elliott, J. L., Osborne, P. A., Yan, Q., and Snider, W. D., 1992, Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development, Neuron. 8:573–587.PubMedCrossRefGoogle Scholar
  174. Scarisbrick, I. A., and Jones, E. G., 1989, Temporal and spatial distribution of neural cell adhesion molecule (NGAM) in the embryonic rat trigeminal system, Soc. Neurosci. Abstr. 15:591.Google Scholar
  175. Scarisbrick, I. A., and Jones, E. G., 1993, NCAM immunoreactivity during major developmental events in the rat maxillary nerve-whisker system, Dev. Brain Res. 71:121–135.CrossRefGoogle Scholar
  176. Scarisbrick, I. A., Isackson, P. J., Benson, D. L., and Jones, E. G., 1990, Differential development of rat trigeminal ganglion cells, Soc. Neurosci. Abstr. 16:316.Google Scholar
  177. Schecterson, L. C, and Bothwell, M., 1992, Novel roles for neurotrophin are suggested by BDNF and NT-3 mRNA expression in developing neurons, Neuron. 9:449–463.PubMedCrossRefGoogle Scholar
  178. Schlaggar, B. L., and O’Leary, D. D. M., 1991, Potential of visual cortex to develop an array of functional units unique to somatosensory cortex, Science. 252:1556–1560.PubMedCrossRefGoogle Scholar
  179. Scott, S. A, 1982, The development of the segmental pattern of skin sensory innervation in embryonic chick hind limb, J.Physiol. (London). 330:203–220.Google Scholar
  180. Semba, K., Masarachia, P., Malamed, S., Jacquin, M. F., Harris, S., Yang, G., and Egger, M. D., 1985, An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord, J. Comp. Neurol. 232:229–240.PubMedCrossRefGoogle Scholar
  181. Senft, S. L., and Woolsey, T. A., 1991, Growth of thalamic afferents into mouse barrel cortex, Cereb. Cortex. 1:308–335.PubMedCrossRefGoogle Scholar
  182. Shatz, C. J., 1990, Impulse activity and the patterning of connections during CNS development, Neuron. 5:745–756.PubMedCrossRefGoogle Scholar
  183. Shatz, C. J., and Stryker, M. P., 1988, Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents, Science. 242:87–89.PubMedCrossRefGoogle Scholar
  184. Shipley, M. T, 1974, Response characteristics of single units in the rat’s trigeminal nuclei to vibrissa displacements, J. Neurophysiol. 37:73–90.PubMedGoogle Scholar
  185. Sikich, L., Woolsey, T. A., and Johnson, E. M. Jr., 1986, Effect of a uniform partial denervation of the periphery on the peripheral and central vibrissal system in guinea pigs, J. Neurosci. 6:1227–1240.PubMedGoogle Scholar
  186. Silberstein, G. B., and Daniel, C. W., 1982, Elvax 40P implants: Sustained, local release of bioactive molecules influencing mammary ductal development, Dev. Biol. 93:272–278.PubMedCrossRefGoogle Scholar
  187. Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vibrissa/barrel system, J. Neurophysiol. 61:311–330.PubMedGoogle Scholar
  188. Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature. 326:694–697.PubMedCrossRefGoogle Scholar
  189. Simons, D. J., and Woolsey, T. A., 1984, Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex, J. Comp. Neurol. 230:119–132.PubMedCrossRefGoogle Scholar
  190. Smith, G. L. 1993, The development and postnatal organization of primary afferent projections to the rat thoracic spinal cord., J. Comp. Neurol. 220:24–43.Google Scholar
  191. Soppet, D., Escandon, E., Maragos, J., Middlemas, D. S., Reid, S. W., Blair, J., Burton, L. E., Stanton, B. R., Kaplan, D. R., Hunter, T, Nikolics, K., and Parada, L. F., 1991, The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkR tyrosine kinase receptor, Cell. 65:895–903.PubMedCrossRefGoogle Scholar
  192. Squinto, S. P., Stitt, T. N., Aldrich, T. H., Davis, S., Bianco, S. M., Radziejewski, G., Glass, D. J., Masiakowski, P., Furth, M. E., Valenzuela, D. M., DiStefano, P. S., and Yancopoulos, G. D., 1991, trkR encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3, but not for nerve growth factor, Cell. 65:885–893.PubMedCrossRefGoogle Scholar
  193. Sretavan, D. W., Shatz, C. J., and Stryker, M. P., 1988, Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin, Nature. 336:468–471.PubMedCrossRefGoogle Scholar
  194. Stainier, D. Y. R., and Gilbert, W., 1990, Pioneer neurons in the mouse trigeminal sensory system, Proc. Natl, Acad. Sci. USA. 87:923–927.CrossRefGoogle Scholar
  195. Steffen, H., and Van der Loos, H., 1980, Early injury to mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrelfield, Exp. Brain Res. 40:419–431.PubMedCrossRefGoogle Scholar
  196. Steindler, D. A., and Cooper, N. G. F., 1987, Glial and glycoconjugate boundaries during postnatal development of the central nervous system, Dev. Brain Res. 36:27–38.CrossRefGoogle Scholar
  197. Steindler, D. A., O’Brien, T. F., Laywell, E., Harrington, K., Faissner, A., and Schachner, M., 1990, Boundaries during normal and abnormal development: In vivo and in vitro studies of glia and glycoconjugates, Exp. Neurol. 109:35–56.PubMedCrossRefGoogle Scholar
  198. Stent, G. S, 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Acad. Sci. USA. 70:997–1001.PubMedCrossRefGoogle Scholar
  199. Stoelting, R. K., 1987, Pharmacology and Physiology in Anesthetic Practice, Lippincott, Philadelphia, pp. 148–168.Google Scholar
  200. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.PubMedGoogle Scholar
  201. Stryker, M. P., and Strickland, S. L. 1984, Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity, Invest. Ophthalmol. Vis. Sci. (Suppl.) 25:278.Google Scholar
  202. Stuermer, C. A., 1990, Target recognition and dynamics of axonal growth in the retinotectal system offish, Neurosci. Res. (Suppl) 13:S1–10.Google Scholar
  203. Stuermer, C. A., Rohrer, B., and Munz, H., 1990, Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impluse blockade, J. Neurosci. 10:3615.PubMedGoogle Scholar
  204. Taniuchi, M., and Johnson, E. M. Jr., 1985, Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor, J. Cell Bml. 101:1100–1106.CrossRefGoogle Scholar
  205. Toda, T., and Hayaski, H., 1992, Morphology of central terminations of intra-axonally stained, lowthreshold mechanoreceptive primary afferent fibers from oral mucosa and periodontium in the rat, Brain Res. 592:261–272.PubMedCrossRefGoogle Scholar
  206. Tsuru, K., Otani, K., Kajiyama, K., Suemune, S., and Shigenaga, Y., 1989, Central terminations of periodontal mechanoreceptive and tooth pulp afferents in the trigeminal principal and oral nuclei of the cat, Brain Res. 485:29–61.PubMedCrossRefGoogle Scholar
  207. Tsutsumi, H., and Mark, V., 1983, Experimental local thalamic application of xylocaine through silicone rubber chemode, J. Neurosurg. 38:743–753.Google Scholar
  208. Udin, S. B., and Fawcett, J. W., 1988, Formation of topographic maps, Annu. Rev. Neurosci. 11:289–327.PubMedCrossRefGoogle Scholar
  209. Van der Loos, H., 1976, Barreloids in mouse somatosensory thalamus, Neurosci. Lett. 2:1–6.CrossRefGoogle Scholar
  210. Van der Loos, H., and Woolsey, T. A., 1973, Somatosensory cortex: Structural alterations following early injury to sense organs, Science. 179:395–397.PubMedCrossRefGoogle Scholar
  211. Van Exan, R. J., and Hardy, M. J., 1980, A spatial relationship between innervation and the early differentiation of vibrissa follicles in the embryonic mouse, J. Anat. 131:643–656.PubMedGoogle Scholar
  212. Vincent, S. B., 1913, The tactile hair of the white rat, J. Comp. Neurol. 23:1–34.CrossRefGoogle Scholar
  213. Vogel, K. S., and Davies, A. M., 1991, The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation, Neuron. 7:819–830.PubMedCrossRefGoogle Scholar
  214. Vongdokmai, R., 1980, Effect of protein malnutrition on development of mouse cortical barrels, J. Comp. Neurol. 191:283–294.PubMedCrossRefGoogle Scholar
  215. Vos, P., Stark, F., and Pittman, R. N., 1991, Merkel cells in vitro: Production of nerve growth factor and selective interactions with sensory neurons, Dev. Biol. 144:281–300.PubMedCrossRefGoogle Scholar
  216. Waite, P. M. E., and de Permentier, P., 1991, The rat’s postero-orbital sinus hair: I. Brainstem projections and the effect of infraorbital nerve section, J. Comp. Neurol. 312:325–340.PubMedCrossRefGoogle Scholar
  217. Walsh, C, and Cepko, G L., 1988, Clonally related cortical cells show several migration patterns, Science. 241:1342–1345.PubMedCrossRefGoogle Scholar
  218. Walsh, C, and Cepko, G L., 1992, Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science. 255:434–440.PubMedCrossRefGoogle Scholar
  219. Weinberg, R. J., Pierce, F. P., and Rustioni, A., 1990, Single fiber studies of ascending input to the cuneate nucleus of cats: I. Morphometry of primary afferent fibers, J. Comp. Neurol. 300:113–133.PubMedCrossRefGoogle Scholar
  220. Welker, E., and Van der Loos, H., 1986, Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: A comparative study in six strains of mice bred for different patterns of mystacial vibrissae, J. Neurosci. 6:3355–3373.PubMedGoogle Scholar
  221. Welker, WI, 1964, Analysis of sniffing in the albino rat, Behavior. 22:223–244.CrossRefGoogle Scholar
  222. Weiler, W L., and Johnson, J. I., 1975, Barrels in cerebral cortex altered by receptor disruption in newborn, but not five-day-old mice Cricetidae and Mundae, Brain Res. 83:504.CrossRefGoogle Scholar
  223. Weskemp, G., and Reichardt, L. F., 1991, Evidence that biological activity of NGF is mediated through a novel subclass of high affinity receptors. Neuron. 6:649–663.CrossRefGoogle Scholar
  224. Westerfield, M., Liu, D. W., Kimmel, C. B., and Walker, C, 1990, Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors, Neuron. 4:867–874.PubMedCrossRefGoogle Scholar
  225. Wheeler, E. F., and Bothwell, M., 1992, Spatiotemporal patterns of expression of NGF and the low-affinity NGF receptor in rat embryos suggest functional roles in tissue morphogenesis and myogenesis, J. Neurosci. 12:930–945.PubMedGoogle Scholar
  226. White, E., 1989, Cortical Circuits: Synaptic Organization of the Cerebral Cortex-Structure, Function and Theory, Birkhauser, Boston.Google Scholar
  227. Williams, J. B., de Permentier, P., and Waite, P. M. E., 1992, The rat’s postero-orbital sinus hair: II. Normal morphology and the increase in peripheral innervation with adjacent nerve section, J. Comp. Neurol. 322:213–223.PubMedCrossRefGoogle Scholar
  228. Williams, R. W, and Rakic, P., 1985, Dispersion of growing axons within the optic nerve of the embroyonic monkey, Proc. Natl. Acad. Sci. USA. 82:3906–3910.PubMedCrossRefGoogle Scholar
  229. Wise, S. P., and Jones, E. G., 1976, The organization and postnatal development of the commissural projection of the rat somatic sensory cortex, J. Comp. Neurol. 168:313–344.PubMedCrossRefGoogle Scholar
  230. Wong, R. O. L., Meister, M., and Shatz, C. J., 1991, Spontaneous correlated bursting activity of retinal ganglion cells is unique to the period of axonal segregation in the LGN, Soc. Neurosci. Abstr. 17:186.Google Scholar
  231. Woolsey, TA., 1990, Peripheral alteration and somatosensory development, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 461–526.Google Scholar
  232. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex, Brain Res. 17:205–242.PubMedCrossRefGoogle Scholar
  233. Woolsey, T. A., and Wann, J. R, 1976, Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages, J. Comp. Neurol. 170:53–66.PubMedCrossRefGoogle Scholar
  234. Woolsey, T A., Anderson, J. R, Wann, J. R., and Stanfield, B. B., 1979, Effects of early vibrissae damage on neurons in the ventrobasal (VB) thalamus of the mouse, J. Comp. Neurol. 184:363–380.PubMedCrossRefGoogle Scholar
  235. Wyatt, S., Shooter, E. M., and Davies, A. M., 1990, Expression of the NGF receptor gene in sensory neurons and their cutaneous targets prior to and during innervation, Neuron. 4:421–427.PubMedCrossRefGoogle Scholar
  236. Yamakado, M., and Yohro, T, 1979, Subdivision of mouse vibrissae on an embryological basis with descriptions of variations in the number and arrangement of sinus hairs and cortical barrels in BALB/c (nu/+; nude, nu/nu) and hairless (hr/hr) strains, Am J. Anat. 155:153–174.PubMedCrossRefGoogle Scholar
  237. Yan, Q., and Johnson, E. M. Jr., 1988, An immunohistochemical study of the nerve growth factor receptor in developing rats, J. Neurosci. 8:3481–3498.PubMedGoogle Scholar
  238. Yan, Q., Snider, W. D., Pinzone, J. J., and Johnson, E. M. Jr. 1988, Retrograde transport of nerve growth factor (NGF) in motoneurons of developing rats: Assessment of potential neurotrophic effects, Neuron. 1:335–343.PubMedCrossRefGoogle Scholar
  239. Yip, H. K., Rich, K. M., Lampe, P. A., and Johnson, E. M. Jr., 1984, The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia, J. Neurosci. 4:2986–2992.PubMedGoogle Scholar
  240. Yip, V. S., Zhang, W.-P., Wooley, T. A., and Lowry, O. H., 1987, Quantitative histochemical and microchemical changes in the adult mouse central nervous system after section of the infraorbital and optic nerves, Brain Res., 406:157–170.PubMedCrossRefGoogle Scholar
  241. Zucker, E., and Welker, W. I., 1969, Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion, Brain Res. 12:138–156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Theodore A. Henderson
    • 1
  • Mark F. Jacquin
    • 1
  1. 1.Department of NeurologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations