Persistent Changes of Single-Cell Responses in Kitten Striate Cortex Produced by Pairing Sensory Stimulation with Iontophoretic Application of Neurotransmitters and Neuromodulators

  • Joachim M. Greuel
  • Heiko J. Luhmann
  • Wolf Singer

Abstract

During a critical period of early postnatal life, the development of the kitten visual cortex depends to a substantial degree on sensory experience. In normally reared animals, most neurons respond to stimulation of both eyes and to movement of contours in either direction (Hubel and Wiesel, 1962). Responses to all orientations of visual stimuli are equally represented. Dramatic changes in this organization of the visual cortex can be obtained, however, by suturing one eye closed (Wiesel and Hubel, 1963) or by rearing kittens in an artificial environment (Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970; Cynader and Chernenko, 1976; Singer, 1976). After monocular deprivation, the majority of cortical cells can no longer be driven from the deprived eye. Similarly, changes in orientation preferences are observed after rearing kittens in a visual environment containing only contours of a single orientation (Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970).

Keywords

Conditioned Stimulus Visual Cortex Unconditioned Stimulus Conditioned Response Response Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320: 172–176.PubMedCrossRefGoogle Scholar
  2. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate: A novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  3. Blakemore, C., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature 228: 477–478.PubMedCrossRefGoogle Scholar
  4. Cynader, M., and Chernenko, G., 1976, Abolition of direction selectivity in the visual cortex of the cat, Science 193: 504–505.PubMedCrossRefGoogle Scholar
  5. Ekerot, C.-F., and Kano, M., 1985, Long-term depression of parallel fibre synapses following stimulation of climbing fibres, Brain Res. 342: 357–360.PubMedCrossRefGoogle Scholar
  6. Flatman, J. A., Schwindt, P. C., Crill, W. E., and Stafstrom, C. E., 1983, Multiple actions of N-methyl-Daspartate on cat neocortical neurons in vitro, Brain Res. 266: 169–173.PubMedCrossRefGoogle Scholar
  7. Freeman, R. D., and Bonds, A. B., 1979, Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement, Science 206: 1093–1095.PubMedCrossRefGoogle Scholar
  8. Frégnac, Y., Thorpe, S., Shulz, D., and Bienenstock, E., 1984, Modification of function in cat visual cortical neurones induced by control of the correlation between postsynaptic activity and visual input, Soc. Neurosci. Abstr. 10: 1078.Google Scholar
  9. García-Sainz, J. A., 1985, ai-Adrenergic and M1-muscarinic actions and signal propagation, Trends. Pharmacol. Sci. 6: 349–350.Google Scholar
  10. Geiger, H., and Singer, W., 1986, A possible role of Ca `+-currents in developmental plasticity, Exp. Brain Res., Ser. 14: 256–270.Google Scholar
  11. Greuel, J. M., Luhmann, H. J., and Singer, W., 1987, Evidence for a threshold in experience-dependent longterm changes of kitten visual cortex, Dev. Brain Res. 34: 141–149.CrossRefGoogle Scholar
  12. Heggelund, P., and Albus, K., 1978, Response variability and orientation discrimination of single cells in striate cortex of cat, Exp. Brain Res. 32: 197–211.PubMedCrossRefGoogle Scholar
  13. Henry, G. H., Bishop, P. O., Tupper, R. M., and Dreher, B., 1973, Orientation specificity and response variability of cells in the striate cortex, Vis. Res. 13: 1771–1779.PubMedCrossRefGoogle Scholar
  14. Hirsch, H. V. B, and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science 168: 869–871.PubMedCrossRefGoogle Scholar
  15. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (Lond.) 160: 106–154.Google Scholar
  16. Kleinschmidt, A., Bear, M. F., and Singer, W., 1986, Effects of the NMDA-receptor antagonist APV on visual cortical plasticity in monocularly deprived kittens, Neurosci. Lett. Suppl. 26: S58.Google Scholar
  17. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305: 719–721.PubMedCrossRefGoogle Scholar
  18. Macy, A., Ohzawa, I., and Freeman, R. D., 1982, A quantitative study of the classification and stability of ocular dominance in the cat’s visual cortex, Exp. Brain Res. 48: 401–408.PubMedCrossRefGoogle Scholar
  19. Madison, D. V., and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299: 636–638.PubMedCrossRefGoogle Scholar
  20. Marlin, S. G., and Cynader, M. S., 1986, Direction selective adaptation of cat striate cortex cells, Invest. Ophthalmol. Vis. Sci. Suppl. 27: 244.Google Scholar
  21. McCormick, D. A., and Prince, D. A., 1986, Mechanisms of action of acetylcholine in the guinea pig cerebral cortex in vitro, J. Physiol. (Land.) 375: 169–194.Google Scholar
  22. McDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321: 519–522.CrossRefGoogle Scholar
  23. Nakajima, Y., Nakajima, S., Leonard, R. J., and Yamaguchi, K., 1986, Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons, Proc. Natl. Acad. Sci. U.S.A. 83: 3022–3026.PubMedCrossRefGoogle Scholar
  24. Nicoletti, F., Meck, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L., and Costa, E., 1986, Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus, J. Neurochem. 46: 40–46.PubMedCrossRefGoogle Scholar
  25. Pettigrew, J. D., and Kasamatsu, T., 1978, Local perfusion of noradrenaline maintains visual cortical plasticity, Nature 271: 761–763.PubMedCrossRefGoogle Scholar
  26. Rauschecker, J. P., and Singer, W., 1979, Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity, Nature 280: 58–60.PubMedCrossRefGoogle Scholar
  27. Sah, P., French, C.R., and Gaye, P. W., 1985, Effects of noradrenaline on some potassium currents in CAI neurones in rat hippocampus, Neurosci. Lett. 60: 295–300.PubMedCrossRefGoogle Scholar
  28. Saul, A. B., and Daniels, J. D., 1985, Adaptation effects from conditioning area 17 cortical units in kittens during physiological recording, Soc. Neurosci. Abstr. 11: 461.Google Scholar
  29. Singer, W., 1976, Modification of orientation and direction selectivity of cortical cells in kittens with monocular vision, Brain Res. 118: 460–468.PubMedCrossRefGoogle Scholar
  30. Singer, W., 1982, Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions, Exp. Brain Res. 47: 209–222.PubMedGoogle Scholar
  31. Singer, W., 1985, Central control of developmental plasticity in the mammalian visual cortex, Vis. Res. 25: 389–396.PubMedCrossRefGoogle Scholar
  32. Singer, W., and Rauschecker, J. P., 1982, Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections, Exp. Brain Res. 47: 223–233.PubMedGoogle Scholar
  33. Singer, W., Rauschecker, J., and Werth, R., 1977, The effect of monocular exposure to temporal contrasts on ocular dominance in kittens, Brain Res. 134: 568–572.PubMedCrossRefGoogle Scholar
  34. Singer, W., Tretter, F., and Yinon, U., 1982, Central gating of developmental plasticity in kitten visual cortex, J. Physiol. (Lond.) 324: 221–237.Google Scholar
  35. Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J., and Weiss, S., 1985, Glutamate stimulates inositol phosphate formation in striatal neurones, Nature 317: 717–719.PubMedCrossRefGoogle Scholar
  36. Tsumoto, T., and Freeman, R. D., 1981, Ocular dominance in kitten cortex: Induced changes of single cells while they are recorded, Exp. Brain Res. 44: 347–351.PubMedGoogle Scholar
  37. Wiesel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26: 1003–1017.PubMedGoogle Scholar
  38. Wilson, J. R., Webb, S. V., and Sherman, S. M., 1977, Conditions for dominance of one eye during competitive development of central connections in visually deprived cats, Brain Res. 136: 277–287.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Joachim M. Greuel
    • 1
  • Heiko J. Luhmann
    • 1
  • Wolf Singer
    • 1
  1. 1.Department of NeurophysiologyMax Planck Institute for Brain ResearchFrankfurt 71Federal Republic of Germany

Personalised recommendations