Advertisement

The Role of Neuronal Activity in the Long-Term Regulation of Synaptic Performance at the Crayfish Neuromuscular Junction

  • Gregory A. Lnenicka

Abstract

Long-term changes in synapses produced by altered impulse activity may be an important mechanism underlying forms of learning. The long-term effects of impulse activity on the physiology and morphology of well-defined synapses can be studied at the neuromuscular junction (Robbins, 1980). This is particularly true for crustacean neuromuscular synapses, where muscles are innervated by relatively few motoneurons. In crustacean muscles the activity of identified motoneurons can be monitored and selectively altered for extended periods in vivo. Identified neuromuscular synapses can be examined physiologically and morphologically. In addition, many of the physiological and morphological features of crustacean neuromuscular synapses are similar to synapses in the central nervous system (Atwood, 1982).

Keywords

Impulse Activity Motor Axon Neuromuscular Synapse Synaptic Regulation EPSP Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood, H. L., 1976, Organization and synaptic physiology of crustacean neuromuscular systems, Prog. Neurobiol. 7: 291–391.PubMedCrossRefGoogle Scholar
  2. Atwood, H. L., 1982, Synapses and neurotransmitters, in: The Biology of Crustacea, Vol. 3 ( H. L. Atwood and D. C. Sandeman, eds.), Academic Press, New York, pp. 105–150.Google Scholar
  3. Atwood, H. L., and Jahromi, S. S., 1978, Fast axon synapses of a crab leg muscle, J. Neurobiol. 9: 1–15.PubMedCrossRefGoogle Scholar
  4. Atwood, H. L., and Johnston, H. S., 1968, Neuromuscular synapses of a crab motor axon, J. Exp. Zool. 167: 457–470.CrossRefGoogle Scholar
  5. Atwood, H. L., and Lnenicka, G. A., 1986, Structure and function in synapses: Emerging correlations, Trends Neurosci. 9 (6): 248–250.CrossRefGoogle Scholar
  6. Bittner, G. D., 1973, Degeneration and regeneration in crustacean neuromuscular systems, Am. Zool. 13: 379408.Google Scholar
  7. Gallego, R., Kuno, M., Nunez, R., and Snider, W. D., 1979, Disuse enhances synaptic efficacy in spinal motoneurons, J. Physiol. (Lond.), 291: 191–205.Google Scholar
  8. Gertler, R. A., and Robbins, N., 1978, Differences in neurotransmission in red and white muscles, Brain Res. 142: 160–164.PubMedCrossRefGoogle Scholar
  9. Hill, R. H., and Govind, C. K., 1981, Comparison of fast and slow synaptic terminals in lobster muscle, Cell Tissue Res. 221: 303–310.PubMedCrossRefGoogle Scholar
  10. Lasek, R. J., and Brady, S. T., 1982, The axon: A prototype for studying expressional cytoplasm, Cold Spring Harbor Symp. Quant. Biol. 46: 113–124.PubMedCrossRefGoogle Scholar
  11. Lawrence, J. C., and Salsgiver, W. J., 1983, Levels of enzymes of energy metabolism are controlled by activity of cultured rat myotubes, Am. J. Physiol. 244: C348 - C355.PubMedGoogle Scholar
  12. Lnenicka, G. A., and Atwood, H. L., 1985a, Age-dependent long-term adaptation of crayfish phasic motor axon synapses to altered activity, J. Neurosci. 5 (2): 459–467.PubMedGoogle Scholar
  13. Lnenicka, G. A., and Atwood, H. L., 1985b, Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron, J. Neurobiol. 16: 97–110.PubMedCrossRefGoogle Scholar
  14. Lnenicka, G. A., Atwood, H. L., and Marin, L., 1986, Morphological transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation, J. Neurosci. 6: 2252–2258.PubMedGoogle Scholar
  15. Pahapill, P. A., Lnenicka, G. A., and Atwood, H. L., 1985, Asymmetry of motor impulses and neuromuscular synapses produced in crayfish claws by unilateral immobilization, J. Comp. Physiol. 157(4):461–467. Robbins, N., 1980, Plasticity at the mature neuromuscular junction, Trends Neurosci. 3: 120: 122.Google Scholar
  16. Robbins, N., and Fischbach, G. D., 1971, Effect of chronic disuse of rat soleus neuromuscular junctions on presynaptic function, J. Neurophysiol. 34: 570–578.PubMedGoogle Scholar
  17. Rubin, L. L., 1985, Increases in muscle Ca++ mediate changes in acetylcholinesterase and acetylcholine receptors caused by muscle contraction, Proc. Natl. Acad. Sci. U.S.A. 82: 7121–7125.PubMedCrossRefGoogle Scholar
  18. Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Annu. Rev. Biochem. 43: 5187.CrossRefGoogle Scholar
  19. Titmus, M. J., 1981, Ultrastructure of identified fast excitatory, slow excitatory and inhibitory neuromuscular junctions in the locust, J. Neurocytol. 10: 363–385.PubMedCrossRefGoogle Scholar
  20. Walrond, J. P., and Reese, T. S., 1985, Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers, J. Neurosci. 5: 1118–1131.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Gregory A. Lnenicka
    • 1
  1. 1.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations