Cell Fusion pp 45-68 | Cite as

The Roles of Ca2+Dependent Membrane-Binding Proteins in the Regulation and Mechanism of Exocytosis

  • Carl E. Creutz
  • William J. Zaks
  • Helen C. Hamman
  • William H. Martin

Abstract

Exocytosis is the process of release of A. stored secretory product from A. cell by fusion of the membrane of the storage organelle (secretory vesicle) with the surface membrane of the cell. This process appears to have been almost universally adopted as the method for secretion of products that are stored and then suddenly released upon stimulation of the cell. For example, it is the basis for the release of neurotransmitters, such as norepinephrine and acetylcholine (ACH); hormones, such as insulin or other polypeptide hormones; and digestive enzymes, such as amylase and trypsin. Therefore, this is one of the most important membrane fusion events that occurs in mature, differentiated cells. Furthermore, some aspects of this process may provide A. model for other intracellular membrane fusion events that occur during regeneration of the plasma membrane, movement of secretory material between the stacks of the Golgi apparatus, fusion of phagosomes with lysosomes, or, in general, any intracellular transport process that involves membrane fusion.

Keywords

Chromaffin Cell Membrane Fusion Secretory Vesicle Granule Membrane Chromaffin Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschko, H., Combine, R. S., Schneider, F. H., Silver, M., and Smith, A. D., 1967, Secretion of A. chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation, Nature (Lond.) 215:58–59.CrossRefGoogle Scholar
  2. Brooks, J. C., and Treml, S., 1983, Catecholamine secretion by chemically skinned cultured chromaffin cells, J. Neurochem. 40:468–473.PubMedCrossRefGoogle Scholar
  3. Brown, E. M., Pazoles, C. J., Creutz, C. E., Aurbach, G. D., and Pollard, H. B., 1978, Regulation of parathyroid hormone release from dispersed bovine parathyroid cells by permeant anions, Proc. Natl. Acad. Sci. USA. 75:876–880.PubMedCrossRefGoogle Scholar
  4. Creutz, C. E., 1981a, Secretory vesicle-cytosol interactions in exocytosis, Biochem. Biophys. Res. Commun. 103:1395–1400.PubMedCrossRefGoogle Scholar
  5. Creutz, C. E., 1981b, Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell. Biol. 91:247–256.PubMedCrossRefGoogle Scholar
  6. Creutz, C. E., and Pollard, H. B., 1980, A. biophysical model of the chromaffin granule: Accurate description of the kinetics of ATP and Cl~ dependent granule lysis, Biophys. J. 31:255–270.PubMedCrossRefGoogle Scholar
  7. Creutz, C. E., and Sterner, D. C., 1983, Calcium dependence of the binding of synexin to isolated chromaffin granules, Biochem. Biophys. Res. Commun. 114:355–364.PubMedCrossRefGoogle Scholar
  8. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium dependent aggregation of isolated chromaffin granules, J. Biol. Chem. 253:2858–2866.PubMedGoogle Scholar
  9. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1979, Self-association of synexin in the presence of calcium, J. Biol. Chem. 254:553–558.PubMedGoogle Scholar
  10. Creutz, C. E., Scott, J. H., Paxoles, C. J., and Pollard, H. B., 1981, Further characterization of the aggregation and fusion of chromaffin granules as A. model for compound exocytosis, J. Cellular Biochem. 18:87–97.CrossRefGoogle Scholar
  11. Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J., 1983, Characterization of the chromobindins: Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca 2+, J. Biol. Chem. 258:14664–14674.PubMedGoogle Scholar
  12. Creutz, C. E., Dowling, L. G., Kyger, E. M., and Franson, R. C., 1985, Phosphatidylinositol-specific phospholipase C activity of chromaffin granule-binding proteins, J. Biol. Chem. 260:7171–7173.PubMedGoogle Scholar
  13. Dabrow, M., Zaremba, S., and Hogue-Angeletti, R. A., 1980, Specificity of synexin-induced chromaffin granule aggregation, Biochem. Biophys. Res. Commun. 96:1164–1171.PubMedCrossRefGoogle Scholar
  14. Dowd, D. J., Edwards, C., Englert, D., Mazurkiewicz, T. E., and Ye, H. Z., 1983, Im-munofluorescent evidence for exocytosis and internalization of secretory granule mem-brane in isolated chromaffin cells, Neuroscience 10:1025–1033.PubMedCrossRefGoogle Scholar
  15. Dunn, L. A., and Holz, R. W., 1983, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells, J. Biol Chem. 258:4989–4993.PubMedGoogle Scholar
  16. Fava, R. A., and Cohen, S., 1984, Isolation of A. calcium-dependent 35-kilodalton substrate for the epidermal growth factor recetor/kinase from A-431 cells, J. Biol. Chem. 259:2636–2645.PubMedGoogle Scholar
  17. Fowler, V. M., and Pollard, H. B., 1982, Chromaffin granule membrane-F-action interactions are calcium sensitive, Nature (Lond.) 295:336–337.CrossRefGoogle Scholar
  18. Geisow, M. J., and Burgoyne, R. D., 1982, Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla, J. Neurochem. 38:1735–1741.PubMedCrossRefGoogle Scholar
  19. Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell. Biol. 57:315–344.PubMedCrossRefGoogle Scholar
  20. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry 23:5675–5681.PubMedCrossRefGoogle Scholar
  21. Hong, K-, Duzgunes, N., Ekerdt, R., and Papahadjopoulos, D., 1982, Synexin facilitates fusion of specific phospholipid membranes at divalent cation concentrations found in-tracellularly, Proc. Natl Acad. Sci. USA. 79:4642–4644.PubMedCrossRefGoogle Scholar
  22. Kikkawa, O., Takai, Y., Minakuchi, K., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties, J. Biol. Chem. 257:13341–13348.PubMedGoogle Scholar
  23. Knight, D. E., and Baker, P. F., 1982, Calcium dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields, J. Membr. Biol. 68:107–140.PubMedCrossRefGoogle Scholar
  24. Marcus, A. J., 1978, The role of lipids in platelet function: With particular reference to the arachidonic acid pathway, J. Lipid Res. 19:793–826.PubMedGoogle Scholar
  25. Martin, W. H., and Creutz, C. E., 1986, Chromobindin A: A. calcium—and ATP—regulated chromaffin granule membrane-binding protein complex, J. Biol. Chem.(in press).Google Scholar
  26. Michener, M. L., Dawson, W. B., and Creutz, C. E., 1986, Phosphorylation of A. chromaffin granule-binding protein in stimulated chromaffin cells, J. Biol. Chem. 261:6548–6555.PubMedGoogle Scholar
  27. Moore, P. B., Kraus-Friedman, N., and Dedman, J. R., 1984, Unique calcium-dependent hydrophobic binding proteins: Possible independent mediators of intracellular calcium distinct from calmodulin, J. Cell Sci. 72:121–133.PubMedGoogle Scholar
  28. Morris, S. J., and Bradley, D., 1984, Calcium-promoted fusion of isolated chromaffin granules detected by resonance energy transfer between labeled lipids embedded in the membrane bilayer, Biochemistry 23:4642–4650.PubMedCrossRefGoogle Scholar
  29. Morris, S. J., and Hughes, J. M. X., 1979, Synexin protein is non-selective in its ability to increase Ca dependent aggregation of biological and artificial membranes, Biochem. Biophys. Res. Commun. 91:345–350.PubMedCrossRefGoogle Scholar
  30. Nagasawa, J., and Douglas, W. W., 1972, Thorium dioxide uptake into adrenal medullary cells and the problem of recapture of granule membrane following exocytosis, Brain Res. 37:141–145.PubMedCrossRefGoogle Scholar
  31. Odenwald, W. F., and Morris, S. J., 1983, Identification of A. second synexin-like adrenal medullary and liver protein that enhances calcium-induced membrane aggregation, Biochem. Biophys. Res. Commun. 112:147–154.PubMedCrossRefGoogle Scholar
  32. Orci, L., and Malaisse, W., 1980, Single and chain release of insulin secretory granules is related to anion transport at exocytotic sites, Diabetes 29:943–946.PubMedGoogle Scholar
  33. Owens, R. J., and Crumpton, M. J., 1984, Isolation and characterization of A. novel 68,000 MrCa 2+-binding protein of lymphocyte plasma membrane, Biochem. J. 219:309–316.PubMedGoogle Scholar
  34. Pace, C. S., and Smith, J. S., 1983, The role of chemiosmotic lysis in the exocytotic release of insulin, Endocrinology 113:964–969.PubMedCrossRefGoogle Scholar
  35. Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.PubMedCrossRefGoogle Scholar
  36. Parsons, S. J., and Creutz, C. E., 1986, p60c-srcactivity detected in the chromaffin granule membrane, Biochem. Biophys. Res. Commun. 134:736–742.PubMedCrossRefGoogle Scholar
  37. Phillips, J. H., Burridge, F.L., Wilson, S. P., and Kirshner, N., 1983, Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells, J. Cell Biol. 97:1906–1917.PubMedCrossRefGoogle Scholar
  38. Pollard, H. B., and Scott, J. H., 1982, Synhibin: A. new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion, F.E.B.S. Lett. 150:201–206.CrossRefGoogle Scholar
  39. Pollard, H. B., Tack-Goldman, K. M., Pazoles, C. J., Cruetz, C. E., and Shulman, N. R., 1977, Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis, Proc. Natl. Acad. Sci. USA. 74:5295–5299.PubMedCrossRefGoogle Scholar
  40. Pollard, H. B., Scott, J. H., and Cruetz, C. E., 1983, Inhibition of synexin activity and ex- ocytosis from chromaffin cells by phenothiazine drugs, Biochem. Biophys. Res. Commun. 113:908–915.PubMedCrossRefGoogle Scholar
  41. Pollard, H. B., Pazoles, C. J., Creutz, C. E., Scott, J. H., Zinder, O., and Hotchkiss, A., 1984, An osmotic mechanism for exocytosis from dissociated chromaffin cells, J. Biol. Chem. 259:1114–1121.PubMedGoogle Scholar
  42. Potter, J. D., Strang-Brown, P., Walker, P. L., and Sida, S., 1983, Ca2+binding to calmodulin, Meth. Enzymol. 102:135–143.PubMedCrossRefGoogle Scholar
  43. Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E., 1984, An enzyme that removes clathrin coats: Purification of an uncoating ATPase, J. Cell. Biol. 99:723–733.PubMedCrossRefGoogle Scholar
  44. Sterner, D. C., Zaks, W. J., and Cruetz, C. E., 1985, Stimulation of the polymerization of synexin by cis-unsaturated fatty acids, Biochem. Biophys. Res. Commun. 132:505–512.PubMedCrossRefGoogle Scholar
  45. Suchard, S. J., Corcoran, J. J., Pressman, B. C., and Rubin, R. W., 1981, Evidence for secretory granule membrane recycling in cultured adrenal chromaffin cells, Cell Biol. Int. Rep. 5:953–962.PubMedCrossRefGoogle Scholar
  46. Sudhof, T. C., Walker, J. H., and Obrocki, T., 1982, Calelectrin self-aggregates and promotes membrane aggregation in the presence of calcium, EMBO J. 1:1167–1170.PubMedGoogle Scholar
  47. Sudhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins: A. new class of ubiquitous Ca +-regulated proteins, Biochemistry 23:1103–1109.PubMedCrossRefGoogle Scholar
  48. Sudhof, T. C., Walker, J. H., and Fritsche, U., 1985, Characterization of calelectrin, A. Ca2+- binding protein isolated from the electric organ of Torpedo marmorata, J. Neurochem. 44:1302–1307.PubMedCrossRefGoogle Scholar
  49. Summers, T. A., and Creutz, C. E., 1985, Phosphorylation of A. chromaffin granule-binding protein by protein kinase C., J. Biol. Chem. 260:2437–2443.PubMedGoogle Scholar
  50. Walker, J. H., 1982, Isolation from cholinergic synapses of A. protein that binds to membranes in A. calcium-dependent manner, J. Neurochem. 39:815–823.PubMedCrossRefGoogle Scholar
  51. Wilson, S. P., and Kirshner, N., 1983, Calcium-evoked secretion from digitonin-permeabi- lized adrenal medullary chromaffin cells, J. Biol. Chem. 258:4994–5000.PubMedGoogle Scholar
  52. Winkler, H., 1971, The membrane of the chromaffin granule, Philos. Trans. R. Soc. Ser.B Biol. Sci. 261:293–303.CrossRefGoogle Scholar
  53. Zaks, W. J., 1986, Ca 2+-dependent chromaffin granule aggregating proteins: A. comparative study of synexin and the calelectrins, Ph.D. thesis, University of Virginia.Google Scholar
  54. Zaks, W. J., and Cruetz, C. E., 1986, A. comparison of synexin and the calelectrins as potentiators of Ca 2+-dependent chromaffin granule aggregation and fusion, J. Biol. Chem., (submitted).Google Scholar
  55. Zimmerberg, J., Cohen, F. S., and Finkeletrin, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes: I. Discharge of vesicles contents across the planar membrane, J. Gen. Physiol. 75:241–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Carl E. Creutz
    • 1
  • William J. Zaks
    • 1
  • Helen C. Hamman
    • 1
  • William H. Martin
    • 1
  1. 1.Department of Pharmacology, Programs in Biophysics, Neuroscience, and Cell and Molecular Biology, and Center for Diabetes and Cancer Research and TrainingUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations