Cell Fusion pp 285-299 | Cite as

Acid-Induced Fusion of Liposomes

  • Leaf Huang
  • Jerome Connor

Abstract

Liposomes have become an important model system for studying the phenomenon of membrane fusion (Blumenthal, 1985; Gregoriadis, 1984). The simplicity of form of artificial lipid membranes makes them an effective tool for elucidating the actual mechanism of fusion between opposing membranes. The information derived from the study of model liposome fusion is A. crucial contribution to the understanding of biologically relevant fusion activities, including endocytosis, exocytosis, and viral infection.

Keywords

Membrane Fusion Resonance Energy Transfer Fusion Activity Aqueous Content Artificial Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentz, J., Ellens, H., Lai, M. Z., and Szoka, F. C., 1985, On the correlation between HIIphase and the contact-induced destabilization of phosphatidylethanolamine-containing membranes, Proc. Natl. Acad. Sci. USA. 82:5742–5745.PubMedCrossRefGoogle Scholar
  2. Blumenthal, R., Henkart, M., and Steer, C. J., 1983, Clathrin induced pH dependent fusion of phosphatidylcholine vesicles, J. Biol. Chem. 258:3409–3415.PubMedGoogle Scholar
  3. Blumenthal, R., 1985, Membrane fusion, Curr. Topics Membranes Transp. 22:172–251.Google Scholar
  4. Bondeson, J., Wijkander, J., and Sundler, R., 1984, Proton-induced membrane fusion role of phospholipid composition and protein-mediated intermembrane contact, Biochim.Biophys. Acta 777:21–27.PubMedCrossRefGoogle Scholar
  5. Collins, D., and Huang, L., 1986, Delivery of diptheria toxin A. fragment to the cytoplasm of toxin-resistant cells by pH-sensitive immunoliposomes, Cancer Research, in press.Google Scholar
  6. Connor, J., and Huang, L., 1985a, Efficient cytoplasmic delivery of A. fluorescent dye by pH-sensitive immunoliposomes,J. Cell Biol. 101:582–589.PubMedCrossRefGoogle Scholar
  7. Connor, J., and Huang, L., 1985b, The effects of pH and divalent cations on the phase behavior of liposomes composed of phosphatidylethanolamine and fatty acid, Biophys.J.47:428a.Google Scholar
  8. Connor, J., and Huang, L., 1986, pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs, Cancer Res. 46:3431–3435.PubMedGoogle Scholar
  9. Connor, J., Sullivan, S., and Huang, L., 1985, Monoclonal antibodies and liposomes, Pharm.Ther. 28:341–365.CrossRefGoogle Scholar
  10. Connor, J., Yatvin, M. B., and Huang, L., 1984, pH-Sensitive liposomes: Acid induced liposome fusion, Proc. Natl. Acad. Sci. USA. 81:1715–1718.PubMedCrossRefGoogle Scholar
  11. Cullis, P. R., and DeKruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399–420.PubMedCrossRefGoogle Scholar
  12. Driessen, A. J. M., Hoekstra, D., Scherphof, G., Kalicharan, R. D., and Wilschut, J., 1985, Low pH induced fusion of liposomes with membrane vesicles derived from Bacillus subtilis,J. Biol. Chem. 260:10880–10887.PubMedGoogle Scholar
  13. Düzgüneş, N., Straubinger, R. M., Baldwin, P. A., Friend, D. S., and Papahadjopoulos, D., 1985, Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes, Biochemistry 24:3091–3098.PubMedCrossRefGoogle Scholar
  14. Ellens, H., Bentz, J., and Szoka, F. C., 1984, pH-induced destabilization of phosphatidyl-ethanolamine-containing liposomes: Role of bilayer contact, Biochemistry 23:1532–1538.PubMedCrossRefGoogle Scholar
  15. Ellens, H., Bentz, J., and Szoka, F. C., 1985a, H+and Ca2+induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.PubMedCrossRefGoogle Scholar
  16. Ellens, H., Bentz, J., and Szoka, F. C., 1985b, Destabilization of phosphatidylethanolamine liposomes at the hexagonal transition temperature, Biophys. J.47:169a.Google Scholar
  17. Gad, A. E., and Eytan, G. D., 1983, Chlorophylls as probes for membrane fusion polymyxin B-induced fusion of liposomes, Biochim. Biophys. Acta 77:170–176.Google Scholar
  18. Gregoriadis, G., 1983, Liposome Technology, CRC Press, Boca Raton, Florida.Google Scholar
  19. Hauser, H., Pascher, I., Pearson, R. H., and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650:21–51.PubMedCrossRefGoogle Scholar
  20. Hong, K., Düzgüneş, W., Ederdt, R., and Papahadjopoulos, D., 1982, Synexin facilitates fusion of specific phospholipid membranes at divalent cation concentrations found in-tracellularly, Proc. Natl. Acad. Sci. USA. 79:4642–4644.PubMedCrossRefGoogle Scholar
  21. Hope, M. I, Walker, D. C., and Cullis, P. R., 1983, Ca2+and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A. freeze-fracture study, Biochem. Biophys. Res. Commun. 110:15–22.PubMedCrossRefGoogle Scholar
  22. Huang, L., and Lui, S. S., 1984, Acid induced fusion of liposomes with inner membranes of mitochondria, Biophys. J.45:72a.Google Scholar
  23. Huang, A., Kennel, S. J., and Huang, L., 1983, Interaction of immunoliposomes with target cells, J. Biol. Chem. 258:14034–14040.PubMedGoogle Scholar
  24. Huang, L., Liu, S. S., Ding, Y. Z., and Gao, F. H., 1985, Acid induced fusion of liposomes with inner membranes of mitochondria, Biochemistry, submitted.Google Scholar
  25. Lai, M. Z., Düzgüneş, N., and Szoka, F. C., 1985a, Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes, Biochemistry 24:1646–1653.PubMedCrossRefGoogle Scholar
  26. Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985b, Acid and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate, Biochemistry 24:1654–1661.PubMedCrossRefGoogle Scholar
  27. Lampe, P. D., and Nelsestuen, G. L., 1982. Myelin basic protein-enhanced fusion of membranes, Biochim. Biophys. Acta 693:320–325.PubMedCrossRefGoogle Scholar
  28. Lis, L. J., McAlister, M., Fuller, N., Rand, R. P., and Parsegian, V. A., 1982, Interaction between neutral phospholipid bilayer membranes, Biophys. J. 37:657–666.PubMedGoogle Scholar
  29. Machy, P., Pierres, M., Barbet, J., and Lesserman, L. D., 1982, Drug transfer into lympho-blasts mediated by liposomes bound to distinct sites on H-2 encoded I-A I-E and K. molecules,J. Immunol. 129:2098–2101.PubMedGoogle Scholar
  30. Martin, F. J., Hubbell, W. L., and Papahadjopoulos, D., 1981, Immunospecific targeting of liposomes to cells: A. novel and efficient method for covalent attachment of ab fragments via disulfide bonds, Biochemistry 20:4229–4236.PubMedCrossRefGoogle Scholar
  31. Matthay, K. K., Heath, T. D., and Papahadjopoulos, D., 1984, Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles, Cancer Res. 44:1880–1886.PubMedGoogle Scholar
  32. Morgan, C. G., Williamson, H., Fuller, S., and Hudson, B., 1983, Mellitin induces fusion of unilamellar phospholipid vesicles, Biochim. Biophys. Acta 732:668–674.PubMedCrossRefGoogle Scholar
  33. Nayar, R., and Schroit, A., 1985, Generation of pH-sensitive liposomes: Use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine, Biochemistry 24:5967–5971.PubMedCrossRefGoogle Scholar
  34. Ostro, M. J., 1983, Liposomes, Marcel Dekker, New York.Google Scholar
  35. Papahadjopoulos, D., and Miller, N., 1967, Phospholipid model membranes: Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135:624–638.PubMedCrossRefGoogle Scholar
  36. Reiss-Husson, F., 1967, Structure de phase liquid crystalline de différents phospholipides, monoglycérides, sphingolipides, anhydres ou en presence d’eau,J. Molec. Biol. 25:363–382.PubMedCrossRefGoogle Scholar
  37. Roa, M., and Boquet, P., 1985, Interaction of tetanus toxin with lipid vesicles at low pH, J. Biol Chem. 260:682–6835.Google Scholar
  38. Rustum, Y. M., Mayhew, E., Szoka, F., and Cambell, J., 1981, Inability of liposome encapsulated 1-ß-D-ara-binofuranosylcytosine nucleotides to overcome drug resistance in L1210 cells, Eur. J. Clin. Oncol. 17:809–817.CrossRefGoogle Scholar
  39. Schenkman, S., Araujo, P. S., Dijkman, R., Quina, F. H., and Chaimovich, H., 1981, Effect of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles, Biochim. Biophys. Acta 649:633–641.PubMedCrossRefGoogle Scholar
  40. Straubinger, R. M., Hong, K., Friend, D. S., and Papahadjopoulos, D., 1983, Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with A. low pH compartment offer internalization in coated vesicles, Cell 32:1069–1079.PubMedCrossRefGoogle Scholar
  41. Straubinger, R. M., Düzgüneş, N., and Papahadjopoulos, D., 1985, pH-sensitive liposome mediated cytoplasmic delivery of encapsulated macromolecules, FEBS Lett. 179:148–154.PubMedCrossRefGoogle Scholar
  42. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093–4099.PubMedCrossRefGoogle Scholar
  43. Szoka, F., Jacobson, K., and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta 551:295–303.PubMedGoogle Scholar
  44. Tom, B. H., and Six, H. R., 1980, Liposomes and Immunology, Elsevier/North-Holland, New York.Google Scholar
  45. Verkleij, A. J., Mombers, C., Leunissen-Birjuelt, J., and Ververgaert, P. H. J. Th., 1979, Lipid intramembranous particles, Nature (Lond.) 279:162–163.CrossRefGoogle Scholar
  46. Wilschut, J., and Papahadjopoulos, D., 1979, Ca2+induced fusion of phospholipid vesicles monitored by mixing of aqueous content, Nature (Lond.) 279:162–163.CrossRefGoogle Scholar
  47. Wang, C. Y., Hughs, C. W., and Huang, L., 1986, Improved cytoplasmic delivery to plant protoplasts via pH-sensitive liposomes, Plant Physiology 82:179–184.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Leaf Huang
    • 1
  • Jerome Connor
    • 1
  1. 1.Department of BiochemistryUniversity of TennesseeKnoxvilleTennesseeUSA

Personalised recommendations