Virus-Induced Cell Fusion

  • Patricia G. Spear

Abstract

Attention is focused in this review on viral proteins that are known to mediate or influence virus-induced cell fusion. Because these proteins also mediate or influence entry of virus into cells, the virion-cell fusion required for this entry is discussed as well. The emphasis is on new information that has emerged since publication of an earlier review on these subjects (White et al., 1983). It was not the intention to provide comprehensive treatment of these subjects.

Keywords

Influenza Virus Herpes Simplex Virus Type Newcastle Disease Virus Cell Fusion Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G. W., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell 10:351–364.PubMedCrossRefGoogle Scholar
  2. Appleyard, G., 1977, Amantadine-resistance as A. genetic marker for influenza viruses, J. Gen. Virol 36:249–255.PubMedCrossRefGoogle Scholar
  3. Bailey, C., Miller, D., and Lenard, J., 1981, Hemolysis of human erythrocytes by vesicular stomatitis virus, J. Cell Biol. 91:111a.Google Scholar
  4. Bailey, C., Miller, D., and Lenard, J., 1984, Effects of DEAE-dextran on infection and hemolysis of VSV. Evidence that non-specific electrostatic interactions mediate effective binding of VSV to cells, Virology 133:111–118.PubMedCrossRefGoogle Scholar
  5. Bishop, D. H. L., and Shope, R. E., 1979, Bunyaviridae, in: Comprehensive Virology, Vol. 14 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum, Press, New York, pp. 1–156.Google Scholar
  6. Blumberg, B., Giorgi, C., Rose, K., and Kolakovsky, D., 1985a, Sequence determination of the Sendai virus fusion protein gene, J. Gen. Virol. 66:317–331.PubMedCrossRefGoogle Scholar
  7. Blumbert, B., Giorgi, C., Roux, L., Dowling, P., Chollet, A., and Kolakofsky, D., 1985b, Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoprotein, Cell 41:269–278.CrossRefGoogle Scholar
  8. Bond, V. C., and Person, S., 1984, Fine structure physical map locations of alterations that affect cell fusion in herpes simplex virus type 1, Virology 132:368–376.PubMedCrossRefGoogle Scholar
  9. Bratt, M. A., and Gallaher, W. R., 1969, Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus, Proc. Natl. Acad. Sci. USA. 64:536–540.PubMedCrossRefGoogle Scholar
  10. Buckmaster, E. A., Gompels, U., and Minson, A., 1984, Characterization and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103molecular weight, Virology 139:408–413.PubMedCrossRefGoogle Scholar
  11. Bzik, D. J., Fox, B. A., DeLuca, N. A., and Person, S., 1984, Nucleotide sequence of A. region of the herpes simplex virus type 1 gB glycoprotein gene: Mutations affecting rate of virus entry and cell fusion, Virology 137:185–190.PubMedCrossRefGoogle Scholar
  12. Capone, J., Toneguzzo, F., and Ghosh, H., 1982, Synthesis and assembly of membrane glycoproteins: Membrane anchoring COOH terminal domain of vesicular stomatitis virus envelope glycoprotein G contains fatty acids, J. Biol. Chem. 257:16–19.PubMedGoogle Scholar
  13. Chanas, A. C., Gould, E. A., Clegg, J. C. S., and Varma, M. G. R., 1982, Monoclonal antibodies to Sindbis virus glycoprotein El can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis, J. Gen. Virol. 58:37–46.PubMedCrossRefGoogle Scholar
  14. Chany-Fournier, F., Chany, C., and Lafay, F., 1977, Mechanism of polykaryocyte induction by vesicular stomatitis virus in rat XC cells, J. Gen. Virol. 34:305–314.PubMedCrossRefGoogle Scholar
  15. Choppin, P. W., and Compans, R. W., 1975, Reproduction of paramyxoviruses, in: Comprehensive Virology, Vol. 4 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum Press, New York, pp. 95–178.Google Scholar
  16. Citovsky, V., and Loyter, A., 1985, Fusion of Sendai virions or reconstituted Sendai virus envelopes with liposomes or erythrocyte membranes lacking virus receptors, J. Biol. Chem. 260:12072–12077.PubMedGoogle Scholar
  17. Daniels, R. S., Douglas, A. R., Skehel, J. J., and Wiley, D. C., 1983a, Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion, J. Gen. Virol 64:1657–1662.PubMedCrossRefGoogle Scholar
  18. Daniels, R. S., Douglas, A. R., Skehel, J. J., Waterfield, M. D., Wilson, I. A., and Wiley, D. C., 1983b, Studies of the influenza virus haemagglutinin in the pH5 conformation, in: The Origin of Pandemic Influenza Viruses (W. G. Laver, ed.), Elsevier, New York, pp. 1–7.Google Scholar
  19. Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus hemagglutinin glycoprotein, Cell 40:431–439.PubMedCrossRefGoogle Scholar
  20. Debroy, C., Pederson, N., and Person, S., 1985, Nucleotide sequence of A. herpes simplex virus type 1 gene that causes cell fusion, Virology 145:36–48.PubMedCrossRefGoogle Scholar
  21. Fidgen, K. J., and Tisdale, M., 1981, An ‘on grid’ electron microscopic method for studying the interaction and fusion of influenza A. virus with human erythrocyte membranes, J. Virol Methods 3:271–276.PubMedCrossRefGoogle Scholar
  22. Florkiewicz, R. Z., and Rose, J. I.C., 1984, A. cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH, Science 225:721–723.PubMedCrossRefGoogle Scholar
  23. Garoff, H., Frischaur, A. M., Simons, K., Lehrach, H., and Delius, H., 1980, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoprotein, Nature (Lond.) 288:236–241.CrossRefGoogle Scholar
  24. Garoff, H., Kondor-Koch, C., and Riedel, H., 1982, Structure and assembly of alphaviruses, Curr. Topics Microbiol Immunol 99:1–50.CrossRefGoogle Scholar
  25. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W., and Schneider, W. J., 1985, Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system, Annu. Rev. Cell Biol. 1:1–39.PubMedCrossRefGoogle Scholar
  26. Gompels, U. A., Richman, D. D., Minson, A. C., and Buckmaster, E. A., 1985, Characterization of glycoprotein H of HSV-1, in: Tenth International Herpesvirus Workshop, Ann Arbor, Michigan, p. 135 (abst).Google Scholar
  27. Handa, K., Chany-Fournier, F., Rousset, S., and Chany, C., 1982, Diffusion of G glycoprotein induced by vesicular stomatitis virus during polykaryocyte formation in cell culture, Biol. Cell 44:261–270.Google Scholar
  28. Hay, A. J., Kennedy, N. C. T., Skehel, J. J., and Appleyard, G., 1979, The matrix protein gene determines amantadine-sensitivity of influenza viruses, J. Gen. Virol 42:189–191.PubMedCrossRefGoogle Scholar
  29. Haywood, A. M., 1974, Characteristics of Sendai virus receptors in A. model membrane, J. Mol Biol. 83:427–436.PubMedCrossRefGoogle Scholar
  30. Haywood, A. M., and Boyer, B. P., 1981, Initiation of fusion and disassembly of Sendai virus membranes into liposomes, Biochem. Biophys. Acta 646:31–35.PubMedCrossRefGoogle Scholar
  31. Haywood, A. M., and Boyer, B. P., 1985, Fusion of influenza virus membranes with liposomes at pH 7.5, Proc. Natl Acad. Sci. USA. 82:4611–4615.PubMedCrossRefGoogle Scholar
  32. Hiller, G., and Weber, K., 1985, Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment, J. Virol 55:651–659.PubMedGoogle Scholar
  33. Hosaka, Y., and Shimizu, K., 1977, Cell fusion by Sendai virus, in: Virus Infection and the Cell Surface (G. Poste and G. L. Nicolson, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 4–155.Google Scholar
  34. Hsu, M.-C., Scheid, A., and Choppin, P. W., 1979, Reconstitution of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution, Virology 95:476–491.PubMedCrossRefGoogle Scholar
  35. Hsu, M.-C., Scheid, A., and Choppin, P. W., 1982, Enhancement of membrane-fusing activity of Sendai virus by exposure of the virus to basic pH is correlated with A. conformational change in the fusion protein, Proc. Natl. Acad. Sci. USA. 79:5862–5866.PubMedCrossRefGoogle Scholar
  36. Huang, R. T. C., Rott, R., Wahn, K., Klenk, H.-D., and Kohama, T., 1980, The function of the neuraminidase in membrane fusion induced by myxoviruses, Virology 107:313–319.PubMedCrossRefGoogle Scholar
  37. Huang, R. T. C., Rott, R., and Klenk, H.-D., 1981, Influenza viruses cause hemolysis and fusion of cells, Virology 110:243–247.PubMedCrossRefGoogle Scholar
  38. Huang, R. T. C., Dietsch, E., and Rott, R., 1985, Further studies on the role of neuraminidase and the mechanism of low pH dependence in influenza virus-induced membrane fusion, J. Gen. Virol. 66:295–301.PubMedCrossRefGoogle Scholar
  39. Hughes, J. V., Johnson, T. C., Rabinowitz, S. G., and Dal Canto, M. C., 1979a, Growth and maturation of A. vesicular stomatitis virus temperature-sensitive mutant and its central nervous system isolate, J. Virol. 29:312–321.PubMedGoogle Scholar
  40. Hughes, J. V., Dille, B. J., Thimmig, R. L., Johnson, T. C., Rabinowitz, S. G., and Dal Canto, M. C., 1979b, Neuroblastoma cell fusion by A. temperature-sensitive mutant of vesicular stomatitis virus, J. Virol. 30:883–890.PubMedGoogle Scholar
  41. Knipe, D. M., Baltimore, D., and Lodish, H., 1977, Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus, J. Virol. 21:1128–1139.PubMedGoogle Scholar
  42. Knutton, S., 1978, The mechanism of virus-induced cell fusion, Micron 9:133–154.Google Scholar
  43. Kohn, A., 1965, Polykaryocytosis induced by Newcastle disease virus in monolayers of animal cells, Virology 26:228–245.PubMedCrossRefGoogle Scholar
  44. Kondor-Koch, C., Burke, B., and Garoff, H., 1983, Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein, J. Cell Biol. 97:644–651.PubMedCrossRefGoogle Scholar
  45. Kotwal, G. J., Capone, J., Irving, R. A., Rhee, S. H., Bilan, P., Toneguzzo, F., Hofmann, T., and Ghosh, H. P., 1983, Viral membrane glycoproteins: Comparison of the amino terminal amino acid sequences of the precursor and mature glycoproteins of three serotypes of vesicular stomatitis virus, Virology 129:1–11.PubMedCrossRefGoogle Scholar
  46. Krystal, M., Young, J. F, Palese, P., Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1983, Sequential mutations in hemagglutinins of influenza B virus isolates: Definition of antigenic domains, Proc. Natl. Acad. Sci. USA. 80:4527–4531.PubMedCrossRefGoogle Scholar
  47. Krystal, M., Young, J. F, Palese, P., Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1984, (Corrections) Sequential mutations in hemagglutinins of influenza B virus isolates: Definition of antigenic domains, Proc. Natl. Acad. Sci. USA. 81:1261.CrossRefGoogle Scholar
  48. Lamb, R. A., and Choppin, P. W., 1983, The gene structure and replication of influenza virus, Annu. Rev. Biochem. 52:467–506.PubMedCrossRefGoogle Scholar
  49. Lamb, R. A., Zebedee, S. L., and Richardson, C. D., 1985, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface, Cell 40:627–633.PubMedCrossRefGoogle Scholar
  50. Little, S. P., and Schaffer, P. A., 1981, Expression of the syncytial (syn) phenotype in HSV-1, strain KOS: Genetic and phenotypic studies of mutants in two synloci, Virology 112:686–702.PubMedCrossRefGoogle Scholar
  51. Lubeck, M. D., Schulman, J. L., and Palese, P., 1978, Susceptibility of influenza A. virus to amantadine is influenced by the gene coding for M protein, J. Virol. 28:710–716.PubMedGoogle Scholar
  52. Manservigi, R., Spear, P. G., and Buchan, A., 1977, Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins, Proc. Natl. Acad. Sci. USA. 74:3913–3917.PubMedCrossRefGoogle Scholar
  53. Marsh, M., 1984, The entry of enveloped viruses into cells by endocytosis, Biochem. J. 218:1–10.PubMedGoogle Scholar
  54. Marsh, M., and Helenius, A., 1980, Adsorptive endocytosis of Semliki Forest virus, J. Mol. Biol. 142:439–454.PubMedCrossRefGoogle Scholar
  55. Matlin, K. S., Reggio, H., Helenius, A., and Simons, K., 1981, Infectious entry pathway of influenza virus in A. canine kidney cell line, J. Cell Biol. 91:601–613.PubMedCrossRefGoogle Scholar
  56. Merz, D. C., and Wolinsky, J. S., 1981, Biochemical features of mumps virus neuraminidases and their relationship to pathogenicity, Virology 114:218–227.PubMedCrossRefGoogle Scholar
  57. Merz, D. C., and Wolinsky, J. S., 1983, Conversion of nonfusing mumps virus infections to fusing infections by selective proteolysis of the HN glycoprotein, Virology 131:328–340.PubMedCrossRefGoogle Scholar
  58. Merz, D. C., Scheid, A., and Choppin, P. W., 1980, Importance of antibodies to the fusion glycoprotein of paramyxoviruses in the prevention of spread of infection, J. Exp. Med. 151:275–288.PubMedCrossRefGoogle Scholar
  59. Miura, N., Uchida, T., and Okada, Y., 1982, HVJ (Sendai virus)-induced envelope fusion and cell fusion are blocked by monoclonal anti-HN protein antibody that does not inhibit hemagglutination activity of HVJ, Exp. Cell Res. 141:409–420.PubMedCrossRefGoogle Scholar
  60. Moss, B., 1974, Reproduction of poxviruses, in: Comprehensive Virology, Vol. 3, (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum Press, New York, pp. 405–474.Google Scholar
  61. Nakanishi, M., Uchida, T., Kim, J., and Okada, Y., 1982, Glycoproteins of Sendai virus (HVJ) have A. critical ratio for fusion between virus envelopes and cell membranes, Exp. CellRes. 142:95–101.CrossRefGoogle Scholar
  62. Nishiyama, Y., Ito, Y., Shimokata, K., Kimura, Y., and Nagata, I., 1976, Polykaryocyte formation induced by VSV in mouse L cells, J. Gen. Virol. 32:85–96.PubMedCrossRefGoogle Scholar
  63. Noble, A. G., Lee, G. T. Y., Sprague, R., Parish, M. L., and Spear, P. G., 1983, Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1, Virology 129:218–224.PubMedCrossRefGoogle Scholar
  64. Norrby, E., and Penttinen, K., 1978, Differences in antibodies to the surface components of mumps virus after immunization with formalin-inactivated and live virus vaccines, J. Infect. Dis. 138:672–676.PubMedCrossRefGoogle Scholar
  65. Norrby, E., Enders-Ruckle, G., and ter Meulen, V., 1975, Differences in the appearance of antibodies to structural components of measles virus after immunization with inactivated and live virus, J. Infect. Dis. 132:262–269.PubMedCrossRefGoogle Scholar
  66. Nussbaum, O., Zakai, N., and Loyter, A., 1984, Membrane-bound antiviral antibodies as receptors for Sendai virions in receptor-depleted erythrocytes, Virology 138:185–197.PubMedCrossRefGoogle Scholar
  67. Okada, Y., and Murayama, F., 1966, Requirement of calcium ions for the cell fusion reaction of animal cells by HVJ, Exp. Cell Res. 44:527–551.PubMedCrossRefGoogle Scholar
  68. Patel, K-, and Pasternak, C. A., 1985, Permeability changes elicited by influenza and Sendai viruses: Separation of fusion and leakage by pH-jump experiments, J. Gen. Virol. 66:767–775.PubMedCrossRefGoogle Scholar
  69. Paterson, R. G., Hiebert, S. W., and Lamb, R. A., 1985, Expression at the cell surface of biologically active fusion and hemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA, Proc. Natl. Acad. Sci. USA. 82:7520–7524.PubMedCrossRefGoogle Scholar
  70. Payne, L. G., and Kristenson, K., 1979, Mechanism of vaccinia virus release and its specific inhibition by N1isonicotinoyl-N2–3-methyl-4-chlorobenzoylhydrazine, J. Virol. 32: 614–622.PubMedGoogle Scholar
  71. Peterhans, E., Baechi, T., and Yewdell, J., 1983, Evidence for different receptor sites in mouse spleen cells for the Sendai viruses hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins, Virology 128:366–376.PubMedCrossRefGoogle Scholar
  72. Pfeifer, J. B., and Compans, R. W., 1984, Structure of the influenza C glycoprotein gene as determined from cloned DNA, Virus Res. 1:281–296.PubMedCrossRefGoogle Scholar
  73. Pogue-Geile, K. L., and Spear, P. G., 1987, The single base pair substitution responsible for the Syn phenotype of herpes simplex virus type 1, strain MP, Virology, in press.Google Scholar
  74. Pogue-Geile, K. L., Lee, G. T.-Y, Shapira, S. K., and Spear, P. G., 1984, Fine mapping of mutations in the fusion-inducing MP strain of herpes simplex type 1, Virology 136:100–109.PubMedCrossRefGoogle Scholar
  75. Poste, G., 1972, Mechanisms of virus-induced cell fusion, J. Rev. Cytol. 33:157–252.CrossRefGoogle Scholar
  76. Poste, G., and Pasternak, C. A., 1978, Virus-induced cell fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), Elsevier/North- Holland Biomedical Press, Amsterdam, pp. 305–367.Google Scholar
  77. Richardson, C. D., and Choppin, P. W., 1983, Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action, Virology 131:518–532.PubMedCrossRefGoogle Scholar
  78. Richardson, C. D., Scheid, A., and Choppin, P. W., 1980, Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1or HA2viral polypeptides, Virology 105:205–222.PubMedCrossRefGoogle Scholar
  79. Riedel, H., Kondor-Koch, C., and Garoff, H., 1984, Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA, EMBO J. 3:1477–1483.PubMedGoogle Scholar
  80. Roizman, B., 1962, Polykaryocytosis, Cold Spring Harbor Symp. Quant. Biol 27:327–340.PubMedCrossRefGoogle Scholar
  81. Rose, J. K., and Gallione, C. J., 1981, Nucleotide sequences of the mRNA’s encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions, J. Virol 39:519–528.PubMedGoogle Scholar
  82. Rose, J. K., Doolittle, R. F, Anilionis, A., Curtis, P. J., and Wunner, W. H., 1982, Homology between the glycoproteins of vesicular stomatitis virus and rabies virus, J. Virol 43: 361–364.PubMedGoogle Scholar
  83. Sanders, P. G., Wilkie, N. M., and Davison, A. J., 1982, Thymidine kinase deletion mutants of herpes simplex virus type 1, J. Gen. Virol 63:277–295.PubMedCrossRefGoogle Scholar
  84. Schlegel, R., and Wade, M., 1984, A. synthetic peptide corresponding to the NH2terminus of vesicular stomatitis virus glycoprotein is A. pH-dependent hemolysin, J. Biol Chem. 259:4691–4964.PubMedGoogle Scholar
  85. Schlegel, R., and Wade, M., 1985, Biologically active peptides of the vesicular stomatitis virus glycoprotein, J. Virol 53:319–323.PubMedGoogle Scholar
  86. Scholtissek, C., and Faulkner, G. P., 1979, Amantadine-resistant and sensitive influenza A. strains and recombinants, J. Gen. Virol 44:807–815.PubMedCrossRefGoogle Scholar
  87. Shibuta, H., Nozawa, A., Shioda, T., and Kanda, T., 1983, Neuraminidase activity and syncytial formation in variants of parainfluenza 3 virus, Infect. Immun. 41:780–788.PubMedGoogle Scholar
  88. Siddell, S., Wege, H., and ter Meulen, V., 1983, The biology of coronaviruses, J. Gen. Virol. 64:761–776.PubMedCrossRefGoogle Scholar
  89. Skehel, J. J., Bayley, P. M., Brown, E. B., Martin, S. R., Waterfield, M. D., White, J. M., Wilson, I. A., and Wiley, D. C., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl Acad. Sci. USA. 79:968–972.PubMedCrossRefGoogle Scholar
  90. Spear, P. G., 1984, Glycoproteins specified by herpes simplex viruses, in: The Herpesviruses, Vol. 3 (B. Roizman, ed.), Plenum Press, New York, pp. 315–356.Google Scholar
  91. Spear, P. G., and Roizman, B., 1980, Herpes simplex viruses, in: Molecular Biology of Tumor Viruses: DNA Tumor Viruses (J. Tooze, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 615–745.Google Scholar
  92. Storey, D. G., and Kang, C. Y., 1985, Vesicular stomatitis virus-infected cells fuse when the intracellular pool of functional M protein is reduced in the presence of G protein, J. Virol 53:374–383.PubMedGoogle Scholar
  93. Strauss, E. G., and Strauss, J. H., 1983, Replication strategies of the single stranded RNA viruses of eukaryotes, Curr. Top. Microbiol Immunol. 105:1–98.PubMedCrossRefGoogle Scholar
  94. Takehara, M., 1975, Polykaryocytosis induced by vesicular stomatitis virus infection in BHK-21 cells, Arch. Virol 49:297–306.PubMedCrossRefGoogle Scholar
  95. Varghese, J. N., Laver, W. G., and Colemen, P. M., 1983, Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A. resolution, Nature (Lond.) 303: 35–40.CrossRefGoogle Scholar
  96. Varmus, H., and Swanstrom, R., 1984, Replication of retroviruses, in: RNA Tumor Viruses, 2nd ed., Vols. 1 and 2 (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 369–512 (Vol. 1) and pp. 75–134 (Vol. 2).Google Scholar
  97. Varsanyi, T. M., Jörnvall, H., and Norrby, E., 1985, Isolation and characterization of the measles F1polypeptide: Comparison with other paramyxovirus fusion proteins, Virology 147:110–117.PubMedCrossRefGoogle Scholar
  98. Wagner, R. R., 1975, Reproduction of rhabdoviruses, in: Comprehensive Virology, Vol. 4 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum Press, New York, pp. 1–93.Google Scholar
  99. White, J., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses, J. Cell Biol. 89:674–679.PubMedCrossRefGoogle Scholar
  100. White, J., Helenius, A., and Gething, M-J., 1982, Haemagglutinin of influenza virus expressed from A. cloned gene promotes membrane fusion, Nature (Lond.) 300:658–659.CrossRefGoogle Scholar
  101. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Quart. Rev. Biophys. 16:151–195.CrossRefGoogle Scholar
  102. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A. resolution, Nature (Lond.) 289:366–373.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Patricia G. Spear
    • 1
  1. 1.Department of Molecular Genetics and Cell Biology and the Committee on VirologyUniversity of ChicagoChicagoUSA

Personalised recommendations