What does the Future Hold?

A Survey of Possible Technical Developments
  • G. J. Leigh
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Forecasting technical developments is not something to be undertaken lightly. In every case, there is any number of unforeseeable developments which can cause the forecaster to be completely incorrect. Consequently, this chapter is not intended to be an exercise in inexpert crystal gazing. Rather, it will be an attempt to assess the direction and pace of developments which are currently in train, and to suggest the impact they may have, all other things (political and social, especially) being equal.

Keywords

Nitrogen Fixation Technical Development Ammonia Production Vanadium Atom Ammonia Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chemical & Engineering News, June 20, 1988.Google Scholar
  2. 2.
    K. Windridge, Fertilisers: A World Industry, Fertiliser Review 1987, p. 16, Fertiliser Manufacturers Association, London, 1987.Google Scholar
  3. 3.
    Much of the work on the fate of nitrogen in temperate soils has been carried out at Rothamsted Experimental Station, UK. The Station’s Annual Reports carry useful summaries of their research.Google Scholar
  4. 4.
    H. Hellriegel, Landw. Vers. Sta. 33, 464 (1887); a good account of this work is given in P. W. Wilson, The Biochemistry of Symbiotic Nitrogen Fixation, University of Wisconsin Press, Madison, Wisconsin (1940).Google Scholar
  5. 5.
    A. E. M. Hood, Phil Trans. R. Soc. London, Ser. B 296, 315 (1982).CrossRefGoogle Scholar
  6. 6.
    H. Bortels, Arch. Mikrobiol. 1, 330 (1930).CrossRefGoogle Scholar
  7. 7.
    For a general review of biological nitrogen fixation research, see J. R. Postgate, The Fundamentals of Nitrogen Fixation, Cambridge University Press, Cambridge (1982).Google Scholar
  8. 8.
    R. Eady, R. Robson, and J. Postgate, Vanadium puts nitrogen in a fix, New Scientist, Issue 1565, p. 59, June 18, 1987.Google Scholar
  9. 9.
    R. D. Joerger, R. Premakumar, and P. E. Bishop, J. Bacteriol. 168, 673 (1986); R. Pau, personal communication.Google Scholar
  10. 10.
    J. M. Arber, B. R. Dobson, R. R. Eady, P. Stevens, S. S. Hasnain, C. D. Gamer, and B. E. Smith, Nature 325, 372 (1987); M. K. Eidsness, A. M. Flank, B. E. Smith, A. C. Flood, C. D. Garner, and B. E. Smith, J. Am. Chem. Soc. 108, 2746 (1986).CrossRefGoogle Scholar
  11. 11.
    R. A. Dixon, M. Buck, M. Drummond, T. Hawkes, H. Khan, S. MacFarlane, M. Merrick, and J. R. Postgate, Plant Soil 90, 225 (1986).CrossRefGoogle Scholar
  12. 12.
    D. J. Lowe and R. N. F. Thorneley, Biochem. J. 224, 895 (1984) and references cited therein.Google Scholar
  13. 13.
    A. Toukdarian and C. Kennedy, EMBO J. 5, 399 (1986); M. Drummond, P. Whitty, and J. Wootton, EMBO J. 5, 441 (1986).Google Scholar
  14. 14.
    An overview can be garnered from H. J. Evans, P. J. Bottomley, and W. E. Newton (eds.), Nitrogen Fixation Research Progress, Martinus Nijhoff, Dordrecht (1985).Google Scholar
  15. 15.
    For an indication of what the future may hold, see S. Dickman, Nature 328, 568 (1987).Google Scholar
  16. 16.
    For a discussion of general prospects of engineered systems, see R. W. F. Hardy, Applications of nitrogen fixation in agriculture and forestry, in Ref. 14, p. 683.Google Scholar
  17. 17.
    V. P. Gutschick, Long-term strategies for supplying nitrogen to crops, Informal Report LA-6700-19S, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 87545 (1977).Google Scholar
  18. 18.
    J. S. Pate, C. A. Atkins, and R. M. Rumbird, Theoretical and experimental costing of nitrogen fixation and related processes in nodules of legumes, in: Current Perspectives in Nitrogen Fixation (A. H. Gibson and W. E. Newton, eds.), Australian Academy of Sciences, Canberra (1981).Google Scholar
  19. 19.
    V. P. Gutschick, Energy flows in the nitrogen cycle, especially in fixation, in: Nitrogen Fixation, Volume 1 (W. E. Newton and W. H. Orme-Johnson, eds.), University Park Press, Baltimore (1980).Google Scholar
  20. 20.
    F. R. Minchin and J. S. Pate, J. Exp. Bot. 24, 259 (1973).CrossRefGoogle Scholar
  21. 21.
    M. J. Merrick, J. R. Agric. Soc. Engl. 147, 202 (1986).Google Scholar
  22. 22.
    M. E. Volpin and V. B. Shur, Dokl. Akad. Nauk SSSR 156, 1102 (591 in translation) (1964).Google Scholar
  23. 23.
    A. D. Allen and C. V. Senoff, Chem. Commun. 24, 621 (1965).Google Scholar
  24. 24.
    D. F. Harrison, E. Weissberger, and H. Taube, Science 159, 320 (1968).CrossRefGoogle Scholar
  25. 25.
    R. A. Henderson, G. J. Leigh, and C. J. Pickett, Adv. Inorg. Chem. Radiochem. 27, 198 (1983).Google Scholar
  26. 26.
    S. N. Anderson, D. L. Hughes, and R. L. Richards, J. Chem. Soc, Dalton Trans., 1591 (1986).Google Scholar
  27. 27.
    M. Mercer, R. H. Crabtree, and R. L. Richards, J. Chem. Soc, Chem. Commun., 808 (1973).Google Scholar
  28. 28.
    See, for example, R. C. Murray and R. R. Schrock, J. Am. Chem. Soc. 107, 4557 (1985) and references cited therein; J. R. Dilworth, S. J. Harrison, R. A. Henderson, and D. R. M. Walton, J. Chem. Soc, Chem. Commun., 176 (1984).CrossRefGoogle Scholar
  29. 29.
    S. N. Anderson, R. L. Richards, and D. L. Hughes, J. Chem. Soc, Chem. Commun., 1291 (1982).Google Scholar
  30. 30.
    G. P. Pez, P. Apgar, and R. K. Crissey, J. Am. Chem. Soc 104, 482 (1982).CrossRefGoogle Scholar
  31. 31.
    J. Jeffrey, M. F. Lappert, and P. I. Riley, J. Organomet. Chem. 181, 25 (1979).CrossRefGoogle Scholar
  32. 32.
    We adopt the new IUPAC recommendations for Group numbering.Google Scholar
  33. 33.
    J. Chatt, G. A. Heath, and G. J. Leigh, J. Chem. Soc, Chem. Commun., 444 (1972).Google Scholar
  34. 34.
    J. Chatt, G. A. Heath, and R. L. Richards, J. Chem. Soc, Chem. Commun., 1010 (1972).Google Scholar
  35. 35.
    J. Chatt, A. J. Pearman, and R. L. Richards, Nature 253, 39 (1975).CrossRefGoogle Scholar
  36. 36.
    J. Chatt, G. A. Heath, and R. L. Richards, J. Chem. Soc, Dalton Trans., 2074 (1974).Google Scholar
  37. 37.
    R. A. Henderson, J. Chem. Soc, Dalton Trans., 2259 (1984) and references cited therein.Google Scholar
  38. 38.
    W. Hussain, G. J. Leigh, H. Mohd-Ali, and C. J. Pickett, J. Chem. Soc, Dalton Trans., 1473 (1986) and references cited therein.Google Scholar
  39. 39.
    G. J. Leigh and C. J. Pickett, J. Chem. Soc, Chem. Commun., 1033 (1981).Google Scholar
  40. 40.
    C. J. Pickett, K. S. Ryder, and J. Talarmin, J. Chem. Soc, Dalton Trans., 1453 (1986) and references cited therein.Google Scholar
  41. 41.
    M. E. Volpin and V. B. Shur, Nitrogen fixation involving nitride and related intermediates, in: New Trends in the Chemistry of Nitrogen Fixation (J. Chatt, L. M. da Camara Pina, and R. L. Richards, eds.), Academic Press, New York (1980).Google Scholar
  42. 42.
    For a review, see. A. E. Shilov, Energy Resources through Photochemistry and Catalysis, Academic Press, New York (1983).Google Scholar
  43. 43.
    L. P. Didenko, A. B. Gavrilov, A. K. Shilova, V. V. Strelets, V. N. Tsarev, A. E. Shilov, V. D. Makhaev, A. K. Banerjee, and L. Pospisil, Nouv. J. Chim., 538 (1986).Google Scholar
  44. 44.
    N. T. Denisov, O. N. Efimov, V. F. Shuvalov, N. I. Shuvalova, A. K. Shilova, and A. E. Shilov, U.S. Patent 3 707 354 (1972).Google Scholar
  45. 45.
    See A. Ohaya, K-I. Aika, and A. Ozaki, J. Chem. Soc, Chem. Commun., 321 (1984) and references cited therein.Google Scholar
  46. 46.
    M. Sudo, M. Ichikawa, M. Soma, T. Onishi, and K. Tamaru, J. Phys. Chem. 73 1174 (1969).CrossRefGoogle Scholar
  47. 47.
    M. Ichikawa, T. Kondo, K. Kawase, M. Sudo, T. Onishi, and K. Tamaru, J. Chem. Soc, Chem. Commun., 176 (1972).Google Scholar
  48. 48.
    Y. Iwasa, T. Onishi, and K. Tamaru, J. Chem. Soc, Chem. Commun., 1051 (1972).Google Scholar
  49. 49.
    S. Naito and K. Tamaru, J. Chem. Soc, Chem. Commun., 1105 (1978).Google Scholar
  50. 50.
    G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc. 99, 7189 (1977); G. N. Schrauzer and T. D. Guth, Photoreduction of nitrogen, U.S. Patent 4113590 (1978).CrossRefGoogle Scholar
  51. 51.
    R. I. Bickley and V. I. Vishwanathan, Nature 280, 306 (1979); R. K. M. Jayantay, V. Viswanathan, and J. A. Navio, NATO Adv. Study Inst. Ser., Ser. C 174, 555 (1986).CrossRefGoogle Scholar
  52. 52.
    Q. Li, K. Domen, and S. Naito, Chem. Lett., 321 (1983).Google Scholar
  53. 53.
    F. Khan, P. Yue, L. Rizzuti, V. Augugliaro, and M. Shiavello, J. Chem. Soc, Chem. Commun., 1049 (1981).Google Scholar
  54. 54.
    K. Harada, S. Igari, M. Takasaki, and A. Shimoyama, J. Chem. Soc, Chem. Commun., 1384 (1986).Google Scholar
  55. 55.
    G. N. Schrauzer, T. D. Guth, M. R. Palmer, and J. Salehi, Nitrogen reducing solar cells, Sol. Energy: Chem. Convers. Storage [Symp.], 1978, 261 (1979).Google Scholar
  56. 56.
    G. N. Schrauzer, personal communication.Google Scholar
  57. 57.
    J. R. Postgate, see Ref. 7, especially Chapter 6.Google Scholar
  58. 58.
    G. Rieder and H. Michaud, Some Aspects of Costs versus Efficiency in the use of the nitrification inhibitor Didin, Paper 20, Proc. Fourth Int. Conf. Fertilizer Technology, p. 413 British Sulphur Corp., London (1981).Google Scholar
  59. 59.
    For a general history and discussion, see S. A. Topham, The history of the catalytic synthesis of ammonia, in: Catalysis Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 7, p. 1, Springer, Berlin (1985).CrossRefGoogle Scholar
  60. 60.
    R. W. Treharne, D. R. Moles, M. R. Bruce, C. K. McKibben, and B. K. Rein, Nitrogen fertilizer production by solar energy, Proc. Int. Solar Energy Meeting, Atlanta, Georgia (1979). An alternative approach has recently been described in the New York Times: Wednesday, August 26, 1987, page D6.Google Scholar
  61. 61.
    B. K. Rein, N. W. Sullivan, and P. E. Eisenbach, Nitrogen fertilizer from solar energy, Paper No. 80-3545, Proc. Am. Soc. Agricultural Engineers, Chicago, Illinois (1980).Google Scholar
  62. 62.
    J. P. Traverse, B. Granier, M. Foex, and F. Pichoir, Rev. Int. Hautes Temp. Refract. 11, 295 (1974).Google Scholar
  63. 63.
    N. D. Parkyns and B. C. Patterson, Chem. Commun., 531 (1965); see also N. D. Parkyns, U.K. Patent 1,149,858 (1965).Google Scholar
  64. 64.
    T. Grundt and K. Christiansen, Hydrogen by water electrolysis as a basis for small-scale ammonia production, Paper 4, Proc. Four Int. Conf. Fertilizer Technology, p. 73, British Sulphur Corp., London (1981).Google Scholar
  65. 65.
    L. Siberring, New technology for reducing ammonia plant feedstock consumption and replacing fuel by other energy forms, Paper 5, Proc. Fourth Int. Conf. Fertilizer Technology, p. 93, British Sulphur Corp., London (1981).Google Scholar
  66. 66.
    E. Schwab and E. Wick, Z. Phys. Chem. (Wiesbaden) 122, 217 (1980).CrossRefGoogle Scholar
  67. 67.
    M. N. Ozyagcuilar, U.S. Patents 1604263 (1978), 1604264 (1978), and 1604265 (1978).Google Scholar
  68. 68.
    T. Takeshita, W. E. Wallace, and R. S. Craig, J. Catal. 44, 236 (1976).CrossRefGoogle Scholar
  69. 69.
    E. Armbruster, A. Baiker, H. Buris, H. J. Guntherodt, R. Schlegl, and B. Walz, J. Chem. Soc., Chem. Commun., 299 (1986).Google Scholar
  70. 70.
    W. J. J. van der Wal and J. W. Geus, U.S. Patent 4459370 (1984).Google Scholar
  71. 71.
    J. R. Jennings, U.K. Patents 758412, 758413, and 758414 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. J. Leigh
    • 1
  1. 1.AFRC Institute of Plant Science Research, Nitrogen Fixation LaboratoryUniversity of SussexBrightonEngland

Personalised recommendations