Determination of the Atomic Structure of Solid Catalysts by X-Ray Diffraction

  • G. Bergeret
  • P. Gallezot
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Solid materials used in heterogeneous catalysis are generally composed of a mixture of several phases which cannot be separated without losing the catalytic properties of the material. These phases are often in a state of fine division, i.e., a large fraction of the atoms are on the surface and therefore they do not have the same coordination as those in the deep layers of a bulk material. Moreover, the structure of these phases as often as not exhibits numerous crystal defects of substitution or displacement with respect to a perfect lattice because the active phase often contains several transition elements without well-defined stoichiometry (e.g., mixed oxide and bimetallic catalyst). It is therefore generally not possible to determine the complete atomic structure of the active phases of a catalyst. However, information on the short-range order of the atoms in catalysts can be obtained from the radial electron distribution function, which gives the distribution of all the interatomic distances present in the solids whatever their degree of order.

Keywords

Radial Distribution Atomic Structure Radial Distribution Function Aluminum Atom Zeolite Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Breck, Zeolite Molecular Sieves, John Wiley and Sons, New York (1974).Google Scholar
  2. 2.
    G. H. Stout and L. H. Jensen, X-ray Structure Determination, MacMillan, New York (1968).Google Scholar
  3. 3.
    G. B. Carpenter, Principles of Crystal Structure Determination, W. A. Benjamin, New York (1969).Google Scholar
  4. 4.
    L. H. Schwartz and J. B. Cohen, Diffraction from Materials, Academic, New York (1977).Google Scholar
  5. 5.
    H. M. Rietveld, Acta Cryst. 22, 151 (1967); J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
  6. 6.
    R. A. Young and D. B. Wiles, J. Appl. Cryst. 15, 430 (1982).CrossRefGoogle Scholar
  7. 7.
    R. J. Hill and I. C. Madsen, J. Appl. Cryst. 17, 297 (1984).CrossRefGoogle Scholar
  8. 8.
    J. D. Sherman and J. M. Benett. in: Molecular Sieves (W. M. Meier and J. B. Uytterhoeven eds.), Advances in Chemistry, Vol. 121, American Chemical Society, Washington (1973), p. 52.Google Scholar
  9. 9.
    V. Gramlich and W. M. Meier, Z. Kristallogr. 133, 134 (1971).CrossRefGoogle Scholar
  10. 10.
    D. H. Olson, J. Phys. Chem. 74, 2758 (1970).CrossRefGoogle Scholar
  11. 11.
    B. Moraweck, P. Gallezot, A. Renouprez, and B. Imelik, J. Phys. Chem. 78, 1959 (1974).CrossRefGoogle Scholar
  12. 12.
    P. K. Maher, F. D. Hunder, and J. Scherzer, Advances in Chemistry, Vol. 101, American Chemical Society, Washington (1971), p. 266.Google Scholar
  13. 13.
    P. Gallezot, R. Beaumont, and D. Barthomeuf, J. Phys. Chem. 78, 1550 (1974).CrossRefGoogle Scholar
  14. 14.
    P. Gallezot, Y. Ben Taarit, and B. Imelik, J. Catal. 26, 295 (1972).CrossRefGoogle Scholar
  15. 15.
    I. E. Maxwell and J. J. de Boer, J. Phys. Chem. 79, 1874 (1975).CrossRefGoogle Scholar
  16. 16.
    P. Gallezot and B. Imelik, J. Phys. Chem. 77, 652 (1973).CrossRefGoogle Scholar
  17. 17.
    P. Gallezot, Y. Ben Taarit, and B. Imelik, J. Phys. Chem. 77, 2556 (1973).CrossRefGoogle Scholar
  18. 18.
    D. H. Olson, J. Phys. Chem. 72, 4366 (1968).CrossRefGoogle Scholar
  19. 19.
    P. Pichat, J. C. Vedrine, P. Gallezot, and B. Imelik, J. Catal. 32, 190 (1974).CrossRefGoogle Scholar
  20. 20.
    J. Bandiera, C. Naccache, and B. Imelik, C. R. Acad. Sci. Paris. 282, 81 (1976).Google Scholar
  21. 21.
    P. Gallezot and B. Imelik, in: Molecular Sieves (W. M. Meier and J. B. Uytterhoeven, eds.). Advances in Chemistry, Vol. 121, American Chemical Society, Washington (1973). p. 66.Google Scholar
  22. 22.
    P. Gallezot and B. Imelik, J. Chim. Phys. 71, 155 (1974).Google Scholar
  23. 23.
    R. Rudham and M. R. Sanders, J. Catal. 27, 287 (1972).CrossRefGoogle Scholar
  24. 24.
    R. Rudham, A. D. Tullett, and K. D. Wagstaff, J. Catal. 38, 488 (1975).CrossRefGoogle Scholar
  25. 25.
    J. V. Smith, in: Zeolite Chemistry and Catalysis (J. A. Rabo, ed.), ACS Monograph, Vol. 171, American Chemical Society, Washington (1976), p. 1.Google Scholar
  26. 26.
    W. J. Mortier, Compilation of Extra-Framework Sites in Zeolites, Structure Commission of the International Zeolite Association, Butterworth, Guildford (1982).Google Scholar
  27. 27.
    D. E. Riley and K. Seff, Inorg, Chem. 14, 714 (1975).Google Scholar
  28. 28.
    D. E. Riley, K. B. Kunz, and K. Seff, J. Am. Chem. Soc. 97, 537 (1975).CrossRefGoogle Scholar
  29. 29.
    H. D. Simpson and H. Steinfink, J. Am. Chem. Soc. 91, 6225 (1969).CrossRefGoogle Scholar
  30. 30.
    P. Gallezot, G. Coudurier, M. Primet, and B. Imelik, in: Molecular Sieves II (J. R. Katzer, ed.) ACS Symposium Series, Vol. 40, American Chemical Society, Washington (1977), p. 144.Google Scholar
  31. 31.
    Y. Kim and K. Seff, J. Am. Chem. Soc. 99, 7055 (1977).CrossRefGoogle Scholar
  32. 32.
    L. R. Gellens, W. J. Mortier, and J. B. Uytterhoeven, Zeolites, 1, 11 (1981).CrossRefGoogle Scholar
  33. 33.
    G. Bergeret, P. Gallezot, and B. Imelik, J. Phys. Chem. 85, 44 (1981).CrossRefGoogle Scholar
  34. 34.
    P. Gallezot, A. Alarcon-Diaz, J. A. Dalmon, A. J. Renouprez, and B. Imelik, J. Catal. 39, 334 (1975).CrossRefGoogle Scholar
  35. 35.
    G. Bergeret and P. Gallezot, J. Phys. Chem. 87, 1160 (1983).CrossRefGoogle Scholar
  36. 36.
    A. Guinier, Théorie et Technique de la Radiocristallographie, Dunod, Paris (1964).Google Scholar
  37. 37.
    P. Gallezot, M. Avalos-Borja, H. Poppa, and K. Heinemann, Langmuir 1, 342 (1985).CrossRefGoogle Scholar
  38. 38.
    B. E. Warren, X-Ray Diffraction. Addison-Wesley, Reading, MA (1969).Google Scholar
  39. 39.
    H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley and Sons, New York (1974), p. 791.Google Scholar
  40. 40.
    R. D. Shannon, G. Bergeret, and P. Gallezot, Nature 316, 736 (1985).CrossRefGoogle Scholar
  41. 41.
    G. Bergeret, J. P. Broyer, M. David, P. Gallezot, J. C. Volta, and G. Hecquet, J. Chem. Soc. Chem. Comm. 825 (1986).Google Scholar
  42. 42.
    Y. Waseda, Novel Application of Anomalous (Resonance) X-Ray Scattering for Structural Characterization of Disordered Materials, Lecture Notes in Physics, Vol. 204, Springer-Verlag, Berlin (1984).CrossRefGoogle Scholar
  43. 43.
    R. Kaplow, S. L. Strong, and B. L. Averbach, Phys. Rev. A138, 1336 (1965).CrossRefGoogle Scholar
  44. 44.
    J. H. Konnert and J. Karle, Acta Cryst. A29, 702 (1973).CrossRefGoogle Scholar
  45. 45.
    L. Gatineau, J. Appl. Cryst. 5, 255 (1972).CrossRefGoogle Scholar
  46. 46.
    P. H. Fuoss, P. Eisenberger, W. K. Warburton, and A. Bienenstock, Phys. Rev. Lett. 46, 1537 (1981).CrossRefGoogle Scholar
  47. 47.
    M. Laridjani, P. Leboucher, D. Raoux, and J. F. Sadoc, J. Phys. Fr. Coll. C8 46, 157 (1985).Google Scholar
  48. 48.
    J. M. Tonnerre, Thesis, Université de Paris-Sud, Centre d’Orsay (1989).Google Scholar
  49. 49.
    M. G. Samant, G. Bergeret, G. Meitzner, and M. Boudart, J. Phys. Chem. 92, 3542 (1988); M. G. Samant, G. Bergeret, G. Meitzner, P. Gallezot, and M. Boudait, J. Phys. Chem. 92, 3547 (1988).Google Scholar
  50. 50.
    T. M. Tri, J. Massardier, P. Gallezot, B. Imelik, J. Catal. 85, 244 (1984); J. Mol. Catal. 25, 151 (1984).CrossRefGoogle Scholar
  51. 51.
    F. Borg, P. Gallezot, J. Massardier, and V. Perrichon, Cl. Mol. Chem. 1, 397 (1986).Google Scholar
  52. 52.
    P. Lecante, A. Mosset, J. Galy, J. Appl. Cryst. 18, 214 (1985).CrossRefGoogle Scholar
  53. 53.
    P. Ratnasamy and A. J. Léonard, Catal. Rev. 6, 293 (1972).CrossRefGoogle Scholar
  54. 54.
    J. J. Fripiat, A. J. Léonard, and N. Baraké, Bull. Soc. Chim. Fr. (1963), p. 122.Google Scholar
  55. 55.
    A. J. Léonard, F. Van Cauwelaert, and J. J. Fripiat, J. Phys. Chem. 71, 695 (1967).CrossRefGoogle Scholar
  56. 56.
    A. J. Léonard, P. Ratnasamy, F. D. Declerck, and J. J. Fripiat, Disc. Faraday Soc. 52, 98 (1971).CrossRefGoogle Scholar
  57. 57.
    P. Ratnasamy, A. J. Léonard, L. Rodrigue, and J. J. Fripiat, J. Catal. 29, 374 (1975).CrossRefGoogle Scholar
  58. 58.
    K. Richter, E. A. Levitskii, V. Kolomiichuk, and E. M. Moroz, Kinet. i Catal. 16, 1578 (1975).Google Scholar
  59. 59.
    E. M. Moroz, S. V. Bogdanov, V. A. Ushakov, and E. A. Levitskii, Kinet. i Catal. 20, 138 (1979).Google Scholar
  60. 60.
    P. Gallezot, A. Bienenstock, and M. Boudait, Nouv. J. Chim. 2, 263 (1978).Google Scholar
  61. 61.
    P. Gallezot, Proc. 5th Int. Conf. on Zeolites (L. V. C. Rees ed.), Heyden, London (1980), p. 364.Google Scholar
  62. 62.
    P. Gallezot, and G. Bergeret, J. Catal. 72, 294 (1981).CrossRefGoogle Scholar
  63. 63.
    P. Gallezot, Zeolites 2, 103 (1982).CrossRefGoogle Scholar
  64. 64.
    P. Gallezot, J. Chim. Phys. 78, 881 (1981).Google Scholar
  65. 65.
    G. Bergeret and P. Gallezot, J. Catal. 87, 86 (1964).CrossRefGoogle Scholar
  66. 66.
    G. Bergeret and P. Gallezot, Proc. 8th Int. Congr. on Catalysis, Dechema, Frankfurt am Main Vol. V (1985), p. 659, Vol. VI (1985), p. 353.Google Scholar
  67. 67.
    G. Bergeret, P. Gallezot, P. Gelin, Y. Ben Taarit, F. Lefebvre, and R. D. Shannon, Zeolites 6, 392 (1986).CrossRefGoogle Scholar
  68. 68.
    G. Bergeret, P. Gallezot, P. Gelin, Y. Ben Taarit, F. Lefebvre, C. Naccache, and R. D. Shannon, J. Catal. 104, 279 (1987).CrossRefGoogle Scholar
  69. 69.
    G. Bergeret, P. Gallezot, and F. Lefebvre, Proc. 7th Mt. Congress on Zeolites (Y. Murakami, A. Iijima and J. W. Ward eds.), Kodansha, Tokyo (1986), p. 401.Google Scholar
  70. 70.
    G. Bergeret and P. Gallezot, Z. Phys. D. Atoms, Molecules and Clusters 12, 591 (1989).CrossRefGoogle Scholar
  71. 71.
    R. D. Shannon, K. H. Gardner, R. H. Staley, G. Bergeret, P. Gallezot, and A. Auroux, J. Phys. Chem. 89, 4778 (1985).CrossRefGoogle Scholar
  72. 72.
    G. H. Kuhl, J. Phys. Chem. Sol. 38, 1259 (1977).CrossRefGoogle Scholar
  73. 73.
    V. Bosacek, D. Freude, T. Frohlich, H. Pfeifer, and H. Schmiedel, J. Coll. Interf. Sci. 85, 502 (1982).CrossRefGoogle Scholar
  74. 74.
    G. Bergeret, M. David, J. P. Broyer, J. C. Volta, and G. Hecquet, Catal. Today, 1, 37 (1987).CrossRefGoogle Scholar
  75. 75.
    J. B. Parise, H. S. Horowitz, T. Egami, W. Dmowski, and A. W. Sleight, J. Catal. 118, 494 (1989).CrossRefGoogle Scholar
  76. 76.
    G. Bergeret, P. Gallezot, K. V. R. Chary, B Rama Rao, and V. S. Subrahmanyam, Appl. Catal. 40, 191 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. Bergeret
    • 1
  • P. Gallezot
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations