A Reappraisal of Cytotoxic Lymphocytes in Human Tumor Immunology

  • Joseph G. Sinkovics

Abstract

Extensive work done at the Section of Clinical Tumor Virology and Immunology, Department of Medicine, The University of Texas M. D. Anderson Hospital, from 1968 to 1978 on the cytotoxicity of lymphocytes to cultured human tumor cells is reviewed. The early results and concepts are now reinterpreted in the light of newer knowledge generated worldwide in the past few years. This work is now leading to adoptive immunotherapy of human tumors by reinfusion of activated autologous tumor killer (ATK) lymphocytes expanded by co-administration of T cell growth factor (interleukin 2).

Keywords

Natural Killer Natural Killer Cell K562 Cell Sarcoma Cell Natural Killer Cell Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Sinkovics, D. A. Dreyer, E. Shirato, J. R. Cabiness, and C. C. Shullenberger, Cytotoxic Lymphocytes. I. Destruction of Neoplastic Cells by Lymphocytes in Cultures of Human Origin, Texas Rep. Biol. Med. 29: 227 (1971).Google Scholar
  2. 2.
    J. G. Sinkovics and C. C. Shullenberger, Cytotoxic Lymphoma: Do Neoplastic Lymphoid Cells Produce Cytotoxins in vivo? Abstracts, Eur. Div. Internat. Soc. Haematology, Milan, Italy (1971).Google Scholar
  3. 3.
    C. C. Shullenberger and J. G. Sinkovics, Lymphocytic Cytotoxins in Wasting Syndrome, N. Eng. J. Med. 283: 1348 (1970).Google Scholar
  4. 4.
    J. G. Sinkovics, C. C. Shullenberger, and J. A. Sykes, Effect of Hematopoietic Chimerism on the Course of Rauscher’s Viral Mouse Leukemia, Proc. Amer. Assoc. Cancer Res. 4: 62 (1963).Google Scholar
  5. 5.
    J. G. Sinkovics, C. C. Shullenberger, and C. D. Howe, Immunological Functions of Homologous Spleen Cells in Viral Mouse Leukemia, Texas Rep. Biol. Med. 23: 94 (1965).Google Scholar
  6. 6.
    J. G. Sinkovics, B. A. Bertin, and C. D. Howe, Some Properties of the Photodynamically Inactivated Mouse Leukemia Virus, Cancer Res. 25: 624 (1965).PubMedGoogle Scholar
  7. 7.
    J. G. Sinkovics, R. J. Pienta, M. J. Ahearn, J. M. Trujillo, and F. M. Mikulik, Activities of Immune Lymphoid Cells Against Leukemia Virus-Carrier Murine Neoplastic Cells, Biblioth. Haematol. 36: 618 (1969).Google Scholar
  8. 8.
    J. G. Sinkovics, C. C. Shullenberger, and C. D. Howe, Cell Destruction by Lymphocytes, Lancet 1: 1215 (1966).CrossRefGoogle Scholar
  9. 9.
    J. G. Sinkovics, Intracellular Lymphocytes in Leukemia, Nature 196: 80 (1962).PubMedCrossRefGoogle Scholar
  10. 10.
    J. G. Sinkovics, C. D. Howe, and C. C. Shullenberger, Cellular Activities in Tissue Cultures of Leukemic Human Bone Marrow, Blood 24: 389 (1964).PubMedGoogle Scholar
  11. 11.
    J. G. Sinkovics, Discussion in: “The Proliferation and Spread of Neoplastic Cells,” Williams and Wilkins Co., Baltimore (1968).Google Scholar
  12. 12.
    J. G. Sinkovics, E. Shirato, J. R. Cabiness, and C. C. Shullenberger, Cytotoxic Lymphocytes in Hodgkin’s Disease? Brit. Med. J. 1: 172 (1970).CrossRefGoogle Scholar
  13. 13.
    J. G. Sinkovics, E. Shirato, R. G. Martin, and E. C. White, Chondrosarcoma J. Med. 1: 15 (1970).PubMedGoogle Scholar
  14. 14.
    J. G. Sinkovics, E. Shirato, J. R. Cabiness, and R. G. Martin, Rhabdomyosarcoma after Puberty, J. Med. 1: 313 (1970).PubMedGoogle Scholar
  15. 15.
    J. G. Sinkovics, E. Shirato, F. Gyorkey, J. R. Cabiness, and C. D. Howe, Relationship Between Lymphoid Neoplasms and Immunologic Functions, in: “Leukemia-Lymphoma,” Year Book Medical Publishers, Chicago (1969).Google Scholar
  16. 16.
    J. G. Sinkovics, E. Shirato, J. R. Cabiness, C. C. Shullenberger, and C. D. Howe, Reactions of Leukocytes with Neoplastic Cells in Culture, Abstracts, First Congr. Europ. Assoc. Cancer Res. Brussels (1970).Google Scholar
  17. 17.
    J. G. Sinkovics, D. A. Dreyer, J. R. Cabiness, and C. C. Shullenberger, Cytotoxicity of Lymphocytes to Cultured Neoplastic Human Cells, Proc. Am. Assoc. Cancer Res. 12: 43 (1971).Google Scholar
  18. 18.
    J. G. Sinkovics, J. R. Cabiness, and C. C. Shullenberger, Monitoring In Vitro of Immune Reactions to Solid Tumors, Front. Rad. Ther. Oncol. 7: 99 (1972).Google Scholar
  19. 19.
    J. G. Sinkovics, E. Shirato, R. G. Martin, J. R. Cabiness, and E. C. White, Chondrosarcoma. Immune Reactions of a Patient to Autologous Tumor, Cancer 27: 782 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    J. G. Sinkovics, F. Gyorkey, J. R. Cabiness, and D. Keil, Effect of Mycoplasma Contamination of Target Cells on the In Vitro Monitoring of Cell-and Antibody-Mediated Immune Reactions of Patients to Cultured Tumor Cells, Abstracts, Am. Soc. Microbiol. (1972).Google Scholar
  21. 21.
    J. G. Sinkovics, L. T. Campos, H. D. Kay, J. R. Cabiness, F. Gonzalez, K. K. Loh, F. Erwin, and F. Gyorkey, Immunological Studies with Human Sarcomas: Effects of Immunization and Chemotherapy on Cell-and Antibody-mediated Immune Reactions, in: “Immunological Aspects of Neoplasia,” Williams and Wilkins Co., Baltimore (1975).Google Scholar
  22. 22.
    J. G. Sinkovics, N. Ahmed, M. J. Hrgovcic, J. R. Cabiness, and J. R. Wilbur, Cytotoxic Lymphocytes. II. Antagonism and Synergism Between Serum Factors and Lymphocytes of Patients with Sarcomas as Tested Against Cultured Tumor Cells, Texas Rep. Biol. Med. 30: 347 (1972).Google Scholar
  23. 23.
    J. G. Sinkovics, J. R. Cabiness, and C. C. Shullenberger, Disappearance After Chemotherapy of Blocking Serum Factors as Measured In Vitro with Lymphocytes Cytotoxic to Tumor Cells, Cancer 30: 1428 (1972).PubMedCrossRefGoogle Scholar
  24. 24.
    J. G. Sinkovics, D. E. Williams, L. T. Campos, H. D. Kay, and J. J. Romero, Intensification of Immune Reactions of Patients to Cultured Sarcoma Cells: Attempts at Monitored Immunotherapy, Semin. Oncol. 1: 361 (1974).Google Scholar
  25. 25.
    J. G. Sinkovics, K. Tebbi, and J. R. Cabiness, Cytotoxicity of Lymphocytes to Established Cultures of Human Tumors: Evidences for Specificity, Nat. Cancer Inst. Monograph 37: 9 (1973).Google Scholar
  26. 26.
    J. G. Sinkovics, N. Ahmed, J. R. Cabiness, and W. J. Reeves, Serum Factors Specifically Antagonistic to or Synergistic with Cytotoxic Lymphocytes in Patients with Neoplastic Disease, Proc. Am. Assoc. Cancer Res. 13: 109 (1972).Google Scholar
  27. 27.
    J. G. Sinkovics, H. Thota, K. K. Loh, F. Gonzalez, L. T. Campos, J. J. Romero, H. D. Kay, and D. K. King, Prospectives of Immunotherapy for Human Sarcomas, in: “Cancer Chemotherapy,” Year Book Medical Publishers, Chicago, (1975).Google Scholar
  28. 28.
    J. G. Sinkovics, H. Thota, J. J. Romero, and R. Waldinger, Bone Sarcomas: Etiology and Immunology, Can. J. Surgery 20: 494 (1977).Google Scholar
  29. 29.
    J. G. Sinkovics, L. T. Campos, H. D. Kay, K. K. Loh, J. R. Cabiness, and F. Ervin, The Concept of Immunotherapy of Human Sarcomas: The Need for an In Vitro Monitoring Assay, Ann. Clin. Lab. Sci. 3: 414 (1973).PubMedGoogle Scholar
  30. 30.
    H. Thota, J. J. Romero, J. G. Sinkovics, S. K. Carrier, J. Crawford, and H. D. Kay, Leukocytes of Patients with Sarcomas Express Significantly More Cytotoxicity to Cultured Sarcoma Cells Than to Carcinoma Cells, Abstracts, Am. Soc. Microbiol. (1975).Google Scholar
  31. 31.
    H. Thota, J. G. Sinkovics, S. K. Carrier, J. J. Romero, and H. D. Kay, Lymphocyte-mediated Cross-reactivity Between Cultured Human Melanoma and Sarcoma Cells, Proc. Am. Assoc. Cancer Res. 16: 123 (1975).Google Scholar
  32. 32.
    H. Thota, J. C. Sinkovics, S. K. Carrier, J. J. Romero, and H. D. Kay, Cytotoxic Lymphocytes. III. Cross-reactions Between Melanoma and Sarcoma Cells as Expressed by Lymphocytes and Serum Factors, Pigment Cell 2: 124 (1976).Google Scholar
  33. 33.
    J. G. Sinkovics, L. T. Campos, K. K. Loh, F. Cormia, W. Velasquez, and C. C. Shullenberger, Chemoimmunotherapy for Three Categories of Solid Tumors (Sarcoma, Melanoma, Lymphoma): The Problem of Immunoresistant Tumors, in: “Neoplasm Immunity: Mechanisms,” R. G. Crispin, ed., University of Illinois, Chicago (1976).Google Scholar
  34. 34.
    L. T. Campos, J. G. Sinkovics, J. J. Romero, S. Carrier, J. R. Cabiness, and H. D. Kay, Correlations and Discrepancies of an In Vitro Assay for Tumor Immunity with Clinical Course, Proc. Am. Soc. Clin. Oncol. 15: 166 (1974).Google Scholar
  35. 35.
    J. G. Sinkovics, H. Thota, H. D. Kay, K. K. Loh, D. E. Williams, C. D. Howe, and C. C. Shullenberger, Intensification of Immune Reactions by Immunotherapy: Attempts at Measuring Sarcoma-specific Reactions In Vitro, in: “Neoplasm Immunity: Theory and Application,” R. G. Crispin, ed., University of Illinois, Chicago (1974).Google Scholar
  36. 36.
    J. G. Sinkovics, J. R. Cabiness, and C. C. Shullenberger, In Vitro Cytotoxicity of Lymphocytes to Human Sarcoma Cells, Biblioth. Haematol. 39:846 (1973).Google Scholar
  37. 37.
    J. G. Sinkovics, Improved Response to Conventional Treatment and Immune Reactions to Sarcoma Antigens of Patients with Sarcomas, in: “Interaction of Radiation Host Immune Defense Mechanisms Malignancy,” Brookhaven Lab. Conf. (1974).Google Scholar
  38. 38.
    J. G. Sinkovics, C. Plager, N. Papadopulos, M. J. McMurtrey, J. J. Romero, R. Waldinger, and M. D. Romsdahl, Immunology and Immunotherapy of Human Sarcomas, in: “Immunotherapy of Human Cancer,” W. D. Terry and S. A. Rosenberg, eds., Raven Press, New York (1978).Google Scholar
  39. 39.
    J. G. Sinkovics, Acquisition of Resistance by Human Tumor Cells to Lymphocyte-mediated Cytotoxicity, Proc. Am. Assoc. Cancer Res. 17: 99 (1976).Google Scholar
  40. 40.
    J. G. Sinkovics, M. L. Samuels, H. Thota, and D. E. Johnson, Kidney Carcinoma: A Chemotherapy-resistant Tumor Probably Amenable to Chemoimmunotherapy, Proc. Am. Soc. Clin. Oncol. 16: 123 (1975).Google Scholar
  41. 41.
    J. G. Sinkovics, Monitoring In Vitro of Cell-mediated Immune Reactions to Tumors, Methods Cancer Res. 8: 107 (1973).Google Scholar
  42. 42.
    P. J. DiSaia, J. G. Sinkovics, F. N. Rutledge, and J. P. Smith, Cell-mediated Immunity to Human Malignant Cells, Am. J. Obstet. Gyn. 114: 979 (1972).Google Scholar
  43. 43.
    J. G. Sinkovics, W. J. Reeves, and J. R. Cabiness, Cell-and Antibody-mediated Immune Reactions of Patients to Cultured Cells of Breast Carcinoma, J. Nat. Cancer Inst. 48: 1145 (1972).PubMedGoogle Scholar
  44. 44.
    J. G. Sinkovics, W. J. Reeves, and J. R. Cabiness, Reactions of Leukocytes and Sera of Patients with Cultured Tumor Cells, in: “Virus Tumorigenesis and Immunogenesis,” W. S. Ceglowski, ed., Academic Press, New York (1973).Google Scholar
  45. 45.
    I. Hellstrom, K. E. Hellstrom, H. O. Sjogren, and G. A. Warner, Demonstration of Cell-mediated Immunity to Human Neoplasms of Various Histologic Types, Int. J. Cancer 7: 1 (1971).PubMedCrossRefGoogle Scholar
  46. 46.
    H. D. Kay, J. G. Sinkovics, J. R. Cabiness, J. J. Romero, and S. K., Carrier, The Concept of Immune Surveillance and its Experimental Testing, Clin. Res. 22: 44A (1974).Google Scholar
  47. 47.
    H. D. Kay, J. R. Cabiness, F. Ervin, W. Virgil, and J. G. Sinkovics, Do Lymphocytes Presensitized to Tumor Antigens Occur in Normal Individuals? Abstracts, Am. Soc. Microbiol. (1973).Google Scholar
  48. 48.
    H. D. Kay and J. G. Sinkovics, Cytotoxic Lymphocytes from Normal Donors, Lancet 2: 296 (1974).PubMedGoogle Scholar
  49. 49.
    H. D. Kay, J. R. Cabiness, T. Kitowski, and J. G. Sinkovics, Cytotoxicity to and Immune Stimulation of Cultured Tumor Cells by Normal Human Lymphocytes and Serum Factors, Proc. Am. Assoc. Cancer Res. 15: 64 (1974).Google Scholar
  50. 50.
    H. D. Kay, H. Thota, J. J. Romero, and J. G. Sinkovics, Lymphocytes from Normal. Donors are Frequently Cytotoxic to Tumor Cells, Clin. Res. 23: 340A (1975).Google Scholar
  51. 51.
    H. D. Kay, H. Thota, and J. G. Sinkovics, A Comparative Study on In Vitro Cytotoxic Reactions of Lymphocytes from Normal Donors and Patients with Sarcomas to Cultured Tumor Cells, Clin. Immun. Immunopath. 5: 218 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    R. B. Herberman, J. Y. Dieu, H. D. Kay, J. R. Ortaldo, C. Riccardi, G. D. Bonnard, H. T. Holden, R. Fagnoni, A. Santoni, and P. Pucceti, Natural Killer Cells: Characteristics and Regulation of Activity, Immunol. Rev. 44: 43 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    A. A. Bom-van Noorloos, H. G. Pegels, R. H. J. van Oers, J. Silberbusch, T. M. Feltkamp-Vroom, R. Goudsmit, W. P. Zeijlemaker, A. E. von dem Borne, and C. J. Melief, Proliferation of T Gamma Cells with Killer Cell Activity in Two Patients with Neutropenia and Recurrent Infections, N. Eng. J. Med. 302: 933 (1980).CrossRefGoogle Scholar
  54. 54.
    G. Schlimok, E. Thiel, E. P. Rieber, D. Huhn, H. Feucht, J. Lohmeyer, and G. Riethmuller, Chronic Leukemia with Hybrid Surface Phenotype Cr Lymphocytic/Myelomonocytic): Leukemia Cells Displaying Natural Killer Cell Activity and Antibody-dependent Cellular Cytotoxicity, Blood 59: 1157 (1982).PubMedGoogle Scholar
  55. 55.
    K. Itoh, K. Tsuchikawa, T. Awataguchi, K. Shiba, and K. A. Kumagai, A Case of Chronic Lymphocytic Leukemia with Properties Characteristic of Natural Killer Cells, Blood 61: 940 (1983).PubMedGoogle Scholar
  56. 56.
    M. Palutke, L. Eisenberg, J. Kaplan, M. Hussain, K. Kithier, P. Tabaczka, I. Mirchandani, and D. Tenenbaum, Natural Killer and Suppressor T Cell Chronic Lymphocytic Leukemia, Blood 63: 1271 (1984).Google Scholar
  57. 57.
    A. Komiyama, S. Yamada, H. Rawai, Y. Miyagawa, and T. Akabane, Childhood Acute Lymphoblastic Leukemia with Natural Killer Activity, Cancer 54: 1547 (1984).PubMedCrossRefGoogle Scholar
  58. 58.
    T. P. Loughran, M. D. Kadin, G. Starkebaum, J. L. Abkowitz, E. A. Clark, C. Disteche, L. G. Lum, and S. J. Slichter, Leukemia of Large Granular Lymphocytes: Association with Clonal Chromosomal Abnormalities and Autoimmune Neutropenia, Thrombocytopenia and Hemolytic Anemia, Ann. Int. Med. 102: 169 (1985).PubMedCrossRefGoogle Scholar
  59. 59.
    J. G. Sinkovics, Modalities of Immunotherapy for Virally Induced Mice Neoplasms, Ann. N.Y. Acad. Sci. 276: 557 (1976).PubMedCrossRefGoogle Scholar
  60. 60.
    J. J. Mule, H. Rosenstein, S. Shu, and S. A. Rosenberg, Eradication of a Disseminated Syngeneic Lymphoma by Systemic Adoptive Transfer of Immune Lymphocytes is Dependent upon a Host Component(s), Cancer Res. 45: 526 (1985).PubMedGoogle Scholar
  61. 61.
    J. J. Mule, S. Shu, and S. A. Rosenberg, The Antitumor Efficacy of Lymphokine-activated Killer Cells and Recombinant Interleukin-2 In Vivo, J. Immun. 135: 646 (1985).PubMedGoogle Scholar
  62. 62.
    S. Shu and S. A. Rosenberg, Adoptive Immunotherapy of Newly Induced Murine Sarcoma, Cancer Res. 45: 1657 (1985).PubMedGoogle Scholar
  63. 63.
    R. Lapreniere and S. A. Rosenberg, Successful Immunotherapy of Experimental Hepatic Metastases with Lymphokine-activated Killer Cells and Recombinant Interleukin-2, Cancer Res. 45: 3735 (1985).Google Scholar
  64. 64.
    T. Yamasaki, H. Hands, J. Yamashita, Y. Watanabe, Y. Namba, and M. Hanaoka, Specific Adoptive Immunotherapy with Tumor-Cytotoxic Lymphocyte Clone for Murine Malignant Gliomas, Cancer Res. 44: 1776 (1984).PubMedGoogle Scholar
  65. 65.
    T. Yamasaki, H. Handa, J. Yamashita, Y. Watanabe, Y. Namba, and M. Hanaoka, Establishment of Experimental Malignant Glioma Specific Cytotoxic T Lymphocyte Clone by T Cell Growth Factor, J. Neurosurg. 60: 998 (1984).PubMedCrossRefGoogle Scholar
  66. 66.
    M. A. Cheever, P. D. Greenberg, and A. Fefer, Potential for Specific Cancer Therapy with Immune Lymphocytes, J. Biol. Resp. Modif. 3: 113 (1984).Google Scholar
  67. 67.
    J. S. Foster, C. J. Wust, C. B. Lozzio, E. G. Bamberger, and A. T. Ichiki, Natural Killer Cell Resistance in K562 Cell Sublines, Int. J. Cancer 35: 343 (1985).PubMedCrossRefGoogle Scholar
  68. 68.
    J. A. Werkmeister, H. F. Pross, and J. C. Roder, Modulation of K562 Cells with Sodium Butyrate. Association of Impaired NK Susceptibility with Sialic Acid and Analysis of Other Parameters, Int. J. Cancer 32: 71 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    T. Allavena, G. Scala, J. Y. Djeu, A. D. Procopio, J. J. Oppenheim, R. B. Herberman, and J. R. Ortaldo, Production of Multiple Cytokines by Clones of Human Large Granular Lymphocytes, Cancer Immunol. Immunother. 19: 121 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    G. Scala, P. Allavena, J. Y. Djeu, T. Kasahara, J. R. Ortaldo, R. B. Herberman, and J. J. Oppenheim, Human Large Granular Lymphocytes are Potent Producers of Interleukin-1, Nature 309: 56 (1984).PubMedCrossRefGoogle Scholar
  71. 71.
    T. Kasahara, J. Y. Djeu, S. F. Dougherty, and J. J. Oppenheim, Capacity of Human Large Granular Lymphocytes (LGL) to Produce Multiple Lymphokines: Interleukin-2, Interferon and Colony Stimulating Factor, J. Immun. 131: 2379 (1983).PubMedGoogle Scholar
  72. 72.
    A. R. Shaw, R. C. Bleackley, J. P. Merryweather, and P. J. Barr, Modulation of Human Natural Killer Cell Activity by Recombinant Human Interleukin-2, Cell. Immun. 91: 193 (1985).CrossRefGoogle Scholar
  73. 73.
    E. Yanagawa, A. Uchida, E. N. Kokoschka, and M. Miksche, Natural Cytotoxicity of Lymphocytes and Monocytes and its Augmentation by OK432 in Melanoma Patients, Cancer Immunol. Immunother. 16: 131 (1984).PubMedCrossRefGoogle Scholar
  74. 74.
    A. Khan, S. Pichyangkul, and S. Waldrop, Production of Lymphotoxin by Subsets of T Cells and NK Cells, Exp. Hematol. 12: 441 (1984).Google Scholar
  75. 75.
    K. Ezaki, K. Okabe, M. Domyo, K. Abe, C. Kubokawa, and M. Ogawa, Effect of Human Fibroblast Interferon on the Cytotoxic Activity of Natural Killer Cells and Lymphoblasts Against Autochthonous and Allogeneic Tumor Cells, Gann 74: 723 (1983).PubMedGoogle Scholar
  76. 76.
    B. S. Edwards, M. J. Hawkins, and E. C. Borden, Correlation Between In Vitro and Systemic Effects of Native and Recombinant Interferon Alpha on Human Natural Killer Cell Cytotoxicity, J. Biol. Resp. Modif. 2: 409 (1983).Google Scholar
  77. 77.
    H. K. Silver, J. M. Connors, and K. A. Karin, Effect of Lymphoblastoid Interferon on Lymphocyte Subsets in Cancer Patients, J. Biol. Resp. Modif. 2: 428 (1983).Google Scholar
  78. 78.
    E. Lotzova, C. A. Savary, J. R. Quesada, J. U. Gutterman, and E. M. Hersh, Analysis of Natural Killer Cell Cytotoxicity of Cancer Patients Treated with Recombinant Interferon, J. Nat. Cancer Inst. 71: 903 (1983).PubMedGoogle Scholar
  79. 79.
    C. A. Spina, J. L. Fahey, D. Durkos-Smith, F. Dorey, and G. Sarna, Suppression of Natural Killer Cell Cytotoxicity in the Peripheral Blood of Patients Receiving Interferon Therapy, J. Biol. Resp. Modif. 2: 458 (1983).Google Scholar
  80. 80.
    H. S. Koren, C. P. Brandt, C. Y. Tso, and J. Laszlo, Modulation of Natural Killing Activity by Lymphoblastoid Interferon in Cancer Patients, J. Biol. Resp. Modif. 2: 151 (1983).Google Scholar
  81. 81.
    S. Einhorn, H. Blomgren, H. Strander, and J. Wasserman, Influence of Human Interferon Alpha Therapy on Cytotoxic Function of Blood Lymphocytes, Cancer Immunol. Immunother. 16: 77 (1983).PubMedCrossRefGoogle Scholar
  82. 82.
    T. Amagai, M. Kita, and J. Imanishi, Augmentation of Natural Killer Activity of Human Peripheral Blood Lymphocytes by Human Leukocyte Interferon: Characterization of the Augmented Activity, Gann 74: 887 (1983).PubMedGoogle Scholar
  83. 83.
    F. Colotta, A. Rambaldi, N. Colombo, L. Tabacchi, M. Introna, and A. Mantovani, Effect of Streptococcal Preparation (0K432) on Natural Killer Activity of Tumor-associated Lymphoid Cells in Human Ovarian Carcinoma and on Lysis of Fresh Ovarian Tumor Cells, Br. J. Cancer 48: 515 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    E. Yanagawa, A. Uchida, and M. D. Miksche, Natural Cytotoxicity of Lymphocytes from Lymph Nodes Draining Breast Carcinoma and its Augmentation by Interferon and OK432, Cancer Immunol. Immunother. 17: 1 (1984).PubMedCrossRefGoogle Scholar
  85. 85.
    E. Lotzova, C. A. Savary, R. S. Freedman, and J. M. Bowen, Natural Killer Cell Cytotoxic Potential of Patients with Ovarian Carcinoma and its Modulation with Virus-modified Tumor Cell Extract, Cancer Immunol. Immunother. 17: 124 (1984).PubMedGoogle Scholar
  86. 86.
    A. Guiliani-Bonmassar, G. Graziani, and L. Frati, Interferon-induced Changes in the Susceptibility of Murine and Human Lymphoma Cells to Natural Cytotoxic Lymphocytes, Int. J. Tissue React. 6: 35 (1984).Google Scholar
  87. 87.
    J. T. Djeu, E. Lanza, S. Pastore, and A. J. Hapel, Selective Growth of Natural Cytotoxic but not Natural Killer Effector Cells in Interleukin-3, Nature 306: 788 (1983).PubMedCrossRefGoogle Scholar
  88. 88.
    P. Flodgren and H. O. Sojgren, Influence In Vitro on NK and K Cell Activities by Cimetidine and Indomethacine With and Without Simultaneous Exposure to Interferon, Cancer Immunol. Immunother. 19: 28 (1985).PubMedCrossRefGoogle Scholar
  89. 89.
    W. B. White and M. Ballow, Modulation of Suppressor Cell Activity by Cimetidine in Patients with Common Variable Hypogammaglobulinemia, N. Eng. J. Med. 312: 198 (1985).CrossRefGoogle Scholar
  90. 90.
    T. Y. Basham, W. K. Smith, and T. C. Merigan, Interferon Enhances Antibody-dependent Cellular Cytotoxicity when Suboptimal Concentrations of Antibody are Used, Cell Immun. 88: 393 (1984).CrossRefGoogle Scholar
  91. 91.
    M. M. Park and Z. Brahmi, Monoclonal Antibody Against K562 Cell Line Accelerates Killing of the Target Cells by Large Granular Lymphocytes, Cell Immun. 84: 94 (1984).CrossRefGoogle Scholar
  92. 92.
    J. E. Christiansen and D. W. Sears, Unusually Efficient Tumor Cell Lysis by Human Effectors of Antibody-dependent Cellular Cytotoxicity Mediated by Monoclonal Antibodies, Cancer Res. 44: 3712 (1984).Google Scholar
  93. 93.
    R. D. Pen, D. P. Braun, J. E. Harris, and A. H. Rossof, Modulation of Natural Killer Cell Function in Brain Tumor Patients by Glass Adherent Suppressor Cells, Proc. Am. Soc. Clin. Oncol. 3: 57 (1984).Google Scholar
  94. 94.
    S. Schantz, L. Poisson, M. D. Romsdahl, and R. M. Byers, Natural Killer Cell Activity in Head and Neck Cancer, Proc. Am. Assoc. Cancer. Res. 26: 308 (1985).Google Scholar
  95. 95.
    D. A. Clark, P. R. McCulloch, S. K. Liao, P. B. Dent, and A. Fuks, Sensitivity of Human Carcinoma Cell Lines to Lysis by Blood Natural Killer Cells Correlating with Surface Expression of Carcinoembryonic Antigen, J. Nat. Cancer Inst. 72: 505 (1984).PubMedGoogle Scholar
  96. 96.
    T. Haliotis, J. A. Werkmeister, I. Louwman, S-K. Liao, J. Matthews, R. Riopello, H. F. Pross, J. J. A. Holden, B. N. White, A. Smith, and J. C. Ruder, Enhanced Natural Killer Sensitivity with Concomitant Clonal Selection for Cells Bearing Homogeneously Staining Regions in the Human Melanoma Cell Line MeWo upon Induction of Differentiation with Theophylline, J. Nat. Cancer Inst. 72: 991 (1984).PubMedGoogle Scholar
  97. 97.
    A. H. Rook, J. J. Hooks, G. V. Quinnan, H. C. Lane, J. F. Manischewitz, A. M. Macher, H. Masur, A. S. Fauci, and J. Y. Djeu, Interleukin-2 Enhances the Natural Killer Cell Activity of Acquired Immunodeficiency Syndrome Patients through a Gamma Interferon Independent Mechanism, J. Immun. 134: 1503 (1985).PubMedGoogle Scholar
  98. 98.
    H. W. Ziegler-Heitbrock, H. Rumpold, D. Kraft, C. Wagenpfeil, R. Munker, T. Abo, C. M. Balch, and T. W. LeBien, Patients with a Deficiency of Natural Killer Cell Activity Lack the VEP13-positive Lymphocyte Subpopulation, Blood 65: 65 (1985).PubMedGoogle Scholar
  99. 99.
    A. Uchida, M. Yagita, and H. Sugiyama, Strong Natural Killer (NK) Cell Activity in Bone Marrow of Myeloma Patients: Accelerated Maturation of Bone Marrow NK Cells and their Interaction with other Bone Marrow Cells, Int. J. Cancer 34: 375 (1984).PubMedCrossRefGoogle Scholar
  100. 100.
    C. Ludwig, M. J. Hicks, D. Pena, and B. G. Durie, OKT8+ Suppressor T Lymphocytes Increased in Patients with Stable Multiple Myeloma, Schweiz Med. Wochenschr. 113: 1451 (1983).PubMedGoogle Scholar
  101. 101.
    W. Solbach, C. Lange, M. Rollinghoff, and H. Wagner, Growth, Interleukin-2 Production and Responsiveness to IL-2 in T4-positive T Lymphocyte Populations from Malignant Cutaneous T Cell Lymphoma (Sezary Syndrome); The Effect of Cyclosporin A, Blood 64: 1022 (1984).PubMedGoogle Scholar
  102. 102.
    S. Levy, J. L. Tempe, P. Caussade, A. Aleksijevic, E. Grosshands, S. Mayer, and J-M. Lang, Stage-related Decrease in Natural Killer Cell Activity in Untreated Patients with Mycosis Fungoides, Cancer Immunol. Immunother. 18: 138 (1984).PubMedCrossRefGoogle Scholar
  103. 103.
    D. R. Strayer, W. A. Carter, S. D. Mayberry, E. Pequignot, and I. Brodsky, Low Natural Cytotoxicity of Peripheral Blood Mononuclear Cells in Individuals with High Familial Incidence of Cancer, Cancer Res. 44: 370 (1984).PubMedGoogle Scholar
  104. 104.
    H. F. Pross and M. C. Baines, Spontaneous Human Lymphocyte-mediated Cytotoxicity Against Tumor Target Cells. I. The Effect of Malignant Disease, Int. J. Cancer 18: 593 (1976).PubMedCrossRefGoogle Scholar
  105. 105.
    A. Uchida and E. Yanagawa, Natural Killer Cell Activity and Autologous Tumor Killing Activity in Cancer Patients: Overlapping Involvement of Effector Cells as Determined in Two-target Conjugate Cytotoxicity Assay, J. Nat. Cancer Inst. 73: 1093 (1984).PubMedGoogle Scholar
  106. 106.
    A. Uchida and M. Moore, Lysis of Fresh Human Tumor Cells by Autologous Tumor-associated Lymphocytes: Two Distinct Types of Autologous Tumor Killer Cells Induced by Co-culture with Autologous Tumor, Cancer Immunol. Immunother. 20: 29 (1985).PubMedCrossRefGoogle Scholar
  107. 107.
    B. M. Vose, P. Gallagher, M. Moore and P. F. Schofield, Specific and Non-specific Lymphocyte Cytotoxicity in Colon Carcinoma, Br. J. Cancer 44: 846 (1981).PubMedCrossRefGoogle Scholar
  108. 108.
    E. Klein and F. Vanky, Natural and Activated Cytotoxic Lymphocytes which Act on Autologous and Allogeneic Tumor Cells, Cancer Immunol. Immunother. 11: 183 (1981).CrossRefGoogle Scholar
  109. 109.
    F. Vanky, M. G. Masucci, M. T. Bejarano, and E. Klein, Lysis of Tumor Biopsy Cells by Blood Lymphocyte Subsets of Various Densities, Int. J. Cancer 33: 185 (1984).PubMedCrossRefGoogle Scholar
  110. 110.
    A. Knuth, B. Danowski, H. F. Oettgen, and L. J. Old, T Cell-mediated Cytotoxicity Against Autologous Malignant Melanoma: Analysis with Interleukin 2-dependent T Cell Cultures, Proc. Natl. Acad. Sci. U.S.A. 81: 3511 (1984).PubMedCrossRefGoogle Scholar
  111. 111.
    I. S. Misko, J. H. Pope, R. Hutter, T. D. Soszynski, and R. G. Kane, HLA-DR Antigen-associated Restriction of EBV-specific Cytotoxic T Cell Colonies, Int. J. Cancer 33: 239 (1984).PubMedCrossRefGoogle Scholar
  112. 112.
    G. V. Quinnan, W. H. Burns, N. Kirmani, A. H. Rook, J. Manischewitz, L. Jackson, G. W. Santos, and R. Saral, HLA-restricted Cytotoxic T Lymphocytes are an Early Immune Response and Important Defense Mechanism in Cytomegalovirus Infections, Rev. Inf. Dis. 6: 156 (1984).CrossRefGoogle Scholar
  113. 113.
    G. Shenouda and D. M. D. Thompson, Blocking of the Response by Human T Lymphocytes to Extracts of Autologous Cancer by Monoclonal Antibody to Class-I Major Histocompatibility Complex Gene Products in the Leukocyte Adherence Inhibition Assay, Cancer Res. 44: 2762 (1984).PubMedGoogle Scholar
  114. 114.
    H. Mitsuja, L. A. Matis, M. Megson, 0. J. Cohen, D. L. Mann, R. C. Gallo, and S. Broder, Immune T Cells Reactive Against Human T Cell Leukemia/Lymphoma Virus, Lancet 1: 649 (1984).CrossRefGoogle Scholar
  115. 115.
    S. Z. Salahuddin, P. D. Markham, S. G. Lindner, J. Gootenberg, M. Popovic, H. hemmi, P. S. Sarin, and R. C. Gallo, Lymphokine Production by Cultured Human T Cells Transformed by Human T Cell Leukemia-Lymphoma Virus I. Science 223: 703 (1984).PubMedCrossRefGoogle Scholar
  116. 116.
    E. Leopardi and W. Rosenman, Production of Alpha-lymphotoxin by Human T Cell Subsets, Cell Immun. 83: 73 (1984).CrossRefGoogle Scholar
  117. 117.
    R. C. Duke, R. Chervenak, and J. J. Cohen, Endogenous Endonucleaseinduced DNA Fragmentation: An Early Event in Cell-mediated Cytolysis, Proc. Natl. Acad. Sci. U.S.A. 80: 6361 (1983).PubMedCrossRefGoogle Scholar
  118. 118.
    J. H. Russell and C. B. Dobos, Mechanisms of Immune Lysis. II. CTLinduced Nuclear Disintegration of Target Begins within Minutes of Cell Contact, J. Immun. 125: 1256 (1980).PubMedGoogle Scholar
  119. 119.
    M. M. Dini, K. Japari, and I. Faiferman, Cell-mediated Cytotoxicity in Preinvasive and Invasive Squamous Cell Carcinoma of the Cervix, Obst. Gyn. 55: 728 (1980).Google Scholar
  120. 120.
    S. Rosenberg, Lymphokine-activated Killer Cells: A New Approach to Immunotherapy of Cancer, J. Nat. Cancer Inst. 75:595 (185).Google Scholar
  121. 121.
    K. Itoh, A. B. Tilden, K. Kumagai, and C. M. Balch, Leu-11 Lymphocytes with Natural Killer (NK) Activity are Precursors of Recombinant Interleukin-2-(rIL-2-) Induced Activated Killer (LAK) Cells, J. Immun. 134: 802 (1985).PubMedGoogle Scholar
  122. 122.
    K. Itoh, A. Tilden, and C. M. Basch, Role of Interleukin-2 and a Serum Suppressive Factor on the Induction of Activated Killer Cells Cytotoxic for Autologous Human Melanoma Cells, Cancer Res. 45: 3173 (1985).PubMedGoogle Scholar
  123. 123.
    P. C. Kohler, J. A. Hank, R. Exten, D. Z. Minkoff, D. G. Wilson, and P. M. Sandel, Clinical Response of a Patient with Diffuse Histiocytic Lymphoma to Adoptive Chemoirrmunotherapy Using Cyclophosphamide and Alloactivated Haploidentical Lymphocytes, Cancer 55: 552 (1985).PubMedCrossRefGoogle Scholar
  124. 124.
    A. Mazumder, T. Y. Eberlein, E. A. Grimm, D. J. Wilson, A. M. Keenan, R. Aamodt, and S. A. Rosenberg, Phase I Study of the Adoptive Immunotherapy of Human Cancer with Lectin-Activated Autologous Mononuclear Cells, Cancer 53: 896 (1984).PubMedCrossRefGoogle Scholar
  125. 125.
    S. K. Jacobs and E. A. Grimm, Lymphokine-activated Killer Cell (LAK) Lysis of Human Glioblastoma In Vitro, Proc. Am. Assoc. Cancer Res. 26: 302 (1985).Google Scholar
  126. 126.
    S. A. Rosenberg, M. T. Lotze, L. M. Muul, S. Leitman, A. E. Chang, S. E. Ettinghausen, Y. L. Matory, J. M. Skibber, E. Shiloni, J. T. Vetto, C. A. Seipp, C. Simpson, and C. M. Reichert, Observations on the Systemic Administration of Autologous Lymphokine-activated Killer Cells and Recombinant Interleukin-2 to Patients with Metastatic Cancer, N. Eng. J. Med. 313: 1485 (1985).CrossRefGoogle Scholar
  127. 127.
    G. Pizza, G. Severini, D. Menniti, C. DeVinci, and F. Corrado, Tumor Regression after Intralesional Injection of Interleukin-2 (IL-2) in Bladder Cancer, Int. J. Cancer 34: 359 (1984).PubMedCrossRefGoogle Scholar
  128. 128.
    J. G. Sinkovics, H. D. Kay, and H. Thota, Evaluation of Chemoimmunotherapy Regimens by In Vitro Lymphocyte Cytotoxicity Directed to Cultured Human Tumor Cells, Biblioth. Haematol. 43: 281 (1976).Google Scholar
  129. 129.
    J. W. Chiao, M. F. Heil, and J. Wu, Enhancing Effect of Beta Interferon on Leukemic Cell Differentiation, Fed. Proc. 43: 1929 (1984).Google Scholar
  130. 130.
    P. E. Harris, P. Talph, P. Litchofsky, and M. A. Moore, Distinct Activities of Interferon Gamma, Lymphokine and Cytokine Differentiation-inducing Factors Acting on the Human Monoblastic Leukemia Cell Line U937, Cancer Res. 45: 9 (1985).PubMedGoogle Scholar
  131. 131.
    N. A. Nicola and D. Metcalf, Binding of the Differentiation-inducer Granulocyte Colony Stimulating Factor to Responsive but not to Unresponsive Leukemic Cell Lines, Proc. Natl. Acad. Sci. U.S.A. 81: 3765 (1984).PubMedCrossRefGoogle Scholar
  132. 132.
    I. L. Olsson, M. G. Sarngadharan, T. R. Breitman, and R. C. Gallo, Isolation and Characterization of a T Lymphocyte-derived Differentiation Inducing Factor for the Myeloid Leukemic Cell Line HL-60, Blood 63: 510 (1984).PubMedGoogle Scholar
  133. 133.
    G. J. Jonak and E. Knight, Jr., Selective Reduction of c-myc RNA in Daudi Cells by Human Beta Interferon, Proc. Natl. Acad. Sci. U.S.A. 81: 1774 (1984).CrossRefGoogle Scholar
  134. 134.
    E. Knight, Jr., E. D. Anton, D. Fahey, B. K. Friedland, and G. J. Jonak, Interferon Regulates c-myc Gene Expression in Daudi Cells at the Post-transcriptional Level, Proc. Natl. Acad. Sci. U.S.A. 82: 1151 (1985).PubMedCrossRefGoogle Scholar
  135. 135.
    C. U. Ludwig, B. G. Durie, S. Salmon, and T. E. Moon, Tumor Growth Stimulation In Vitro by Interferons, Eur. J. Cancer. Clin. Oncol. 19: 1625 (1983).PubMedCrossRefGoogle Scholar
  136. 136.
    P. M. May, E. C. Holmes, and S. H. Golub, Depression of Natural Killer Cytotoxic Activity in Lymphocytes Infiltrating Human Pulmonary Tumors, Cancer Res. 45: 57 (1985).Google Scholar
  137. 137.
    J. Herman, M. C. Kew, and A. R. Rabson, Defective Interleukin-1 Production by Natural Killer Cells of Patients with Cancer, Cancer Immunol. Immunother. 19: 148 (1985).PubMedCrossRefGoogle Scholar
  138. 138.
    P. Hersey, C. Bindor, M. Czerniecki, A. Sparling, J. Wass, and W. H. McCarthy, Inhibition of Interleukin-2 Production by Factors Released from Tumor Cells, J. Immun. 131: 2837 (1983).PubMedGoogle Scholar
  139. 139.
    A. K. Lichtenstein, J. Berek, and J. Zighelboim, Natural Killer Inhibitory Substance Produced by the Peritoneal Cells of Patients with Ovarian Cancer, J. Nat. Cancer Inst. 74: 349 (1985).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Joseph G. Sinkovics
    • 1
    • 2
    • 3
  1. 1.Community Cancer CenterSt. Joseph’s HospitalTampaUSA
  2. 2.University of South Florida College of MedicineTampaUSA
  3. 3.Department of Virology and EpidemiologyBaylor College of MedicineHoustonUSA

Personalised recommendations