Nitrosamines and Human Cancer: Some Implications of Basic Research

  • Peter N. Magee

Abstract

The nitrosamines belong to the class of N-nitroso compounds which also includes nitrosoalkylureas and nitroso-N-alkylcarbamates, conveniently described as nitrosamides, and nitrosamidines. The chemical structures of some examples of these compounds are shown in Figure 1. N-nitroso compounds undergo photochemical decomposition when exposed to ultraviolet light but the nitrosamines are chemically stable under physiological conditions in the absence of light. The nitrosamides and nitrosamidines, on the other hand, decompose rapidly at alkaline pH and, in some cases, in the presence of sulfhydryl compounds, to yield alkylating products. Decomposition may also occur more slowly at neutrality. These differences in chemical stability have profound effects on the biological activities of the compounds. More than 300 N-nitroso compounds are known to be carcinogenic and their chemical properties and biological activities, which include cytotoxicity, carcinogenicity, mutagenicity, teratogenicity and use in the chemotherapy of human cancer, have been extensively reviewed (1–7). Most studies of the acute toxicity of the nitrosamines have been carried out with the shorter chain dialkyl and simpler cyclic compounds such as dimethyl-and diethylnitrosamine and N-nitrosomorpholine which are selectively hepatotoxic while the nitrosamides and nitrosamidines cause tissue and cellular injury at the site of application and, in varying degree, to organs with rapid cell turnover such as the bone marrow, lymphoid tissue and intestine. As will be discussed later, these differences in tissue and organ specificity may reflect the requirement of the nitrosamines for metabolic activation and the absence of this requirement by the nitrosamides. More than 300 N-nitroso compounds have been found to be carcinogenic (4) and, so far all species adequately tested have proven to be susceptible to the carcinogenic action of one or more nitrosamines (8,9), N-nitrosodiethylamine having been the compound used most often. The susceptible species have included monkeys, dogs, cats, pigs, and the usual laboratory rodents, fish, amphibia, and most recently, snakes (9). The compounds are equally effective as mutagens in all of the usual test systems, with the nitrosamines requiring an enzyme system, usually the so-called liver S-9 mix of the Ames test, whereas the nitrosamides and nitrosamidines are direct acting mutagens (5–7). Several of the smaller molecular weight compounds are alkylating agents, the nitrosamines requiring metabolic activation and the nitrosamides acting directly to alkylate DNA and other cellular constituents.

Keywords

Nasopharyngeal Carcinoma Smokeless Tobacco Nitroso Compound Smokeless Tobacco Product Salted Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Magee and J. M. Barnes, Carcinogenic Nitroso Compounds, Adv. Cancer Res. 10: 163 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Druckrey, R. Preussman, S. Ivankovic, and D. Schmähl, Organotrope Carcinogene Wirkungen bei 65 Verschieden N-Nitroso-verbindungen an BD-ratten, Z. Krebsforsch. 69: 103 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    P. N. Magee, R. Montesano, and R. Preussman, N-nitroso Compounds and Related Carcinogens, in: “Chemical Carcinogens,” A. C. S. Monograph 173, C. E. Searle, ed., American Chemical Society, Washington (1976).Google Scholar
  4. 4.
    R. Preussman and B. W. Stewart, N-Nitroso Carcinogens, in: “Chemical Carcinogens,” 2nd Edition, Volume 2, A. C. S. Monograph 182, C. E. Searle, ed., American Chemical Society, Washington (1984).Google Scholar
  5. 5.
    S. Neale, Mutagenicity of Nitrosamides and Nitrosamidines in Microorganisms and Plants, Mutation Res. 32: 229 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Montesano and H. Bartsch, Mutagenic and Carcinogenic N-Nitroso Compounds: Possible Environmental Hazards, Mutation Res. 32: 179 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    T. K. Rao, W. Lijinsky, and J. L. Epler, eds., “Genotoxicology of N-Nitroso Compounds,” Plenum Press, New York (1984).Google Scholar
  8. 8.
    P. Bogovski and S. Bogovski, Animal Species in which N-Nitroso Compounds Induce Cancer, Int. J. Cancer 27: 471 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Schmähl and H. R. Scherf, Carcinogenic Activity of N-Nitrosodiethylamine in Snakes (Python Reticulatus, Schneider) in: “Occurrence, Biological Effects and Relevance to Human Cancer,” I. K. O’Neill, R. C. Von Borstel, C. T. Miller, J. Long, and H. Bartsch, eds., IARC Scientific Publications No. 57, International. Agency for Research on Cancer, Lyon (1984).Google Scholar
  10. 10.
    P. N. Magee and J. M. Barnes, Induction of Kidney Tumors in the Rat with Dimethylnitrosamine (N-Nitrosodimethylamine), J. Path. Bact. 84: 19 (1962).PubMedCrossRefGoogle Scholar
  11. 11.
    C. C. Hard, H. King, R. Borland, B. W. Stewart, and B. Dobrostanski, Length of In Vivo Exposure to a Carcinogenic Dose of Dimethylnitrosamine Necessary for Subsequent Expression of Morphological Transformation by Rat Kidney Cells In Vitro, Oncology 34: 16 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    G. C. Hard, Histological Conformity of Implantation Tumors Produced by Kidney Cell Lines Derived from Dimethylnitrosamine-treated Rats, with Dimethylnitrosamine-induced Renal Mesenchymal Tumors, Cancer Res. 38: 1974 (1978).PubMedGoogle Scholar
  13. 13.
    S. S. Mirvish, N-nitroso Compounds: Their Chemical and In Vivo Formation and Possible Importance as Environmental Carcinogens, J. Toxicol. Environ. Health 2: 1267 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    D. H. Fine, N-Nitroso Compounds in the Environment, Adv. Environ. Sci. Technol. 10: 39 (1980).Google Scholar
  15. 15.
    R. Preussmann and G. Eisenbrand, N-Nitroso Carcinogens in the Environment, in: “Chemical Carcinogens,” A. C. S. Monograph 182, C. E. Searle, ed., American Chemical Society, Washington (1984).Google Scholar
  16. 16.
    J. M. Barnes, Nitrosamines, Essays in Toxicology 5: 1 (1974).Google Scholar
  17. 17.
    P. N. Magee, Metabolism of Nitrosamines: An Overview, in: “Microsomes, Drug Oxidations and Chemical Carcinogenesis,” M. J. Coon, ed., Academic Press, New York (1980).Google Scholar
  18. 18.
    M. Mochizuki, T. Anjo and M. Okada, Isolation and Characterization of N-Alkyl-N-(hydroxymethyl)nitrosamines from N-(hydroperoxymethyl)nitrosamines by Deoxygenation, Tetrahedron Lett. 21: 3693 (1980).CrossRefGoogle Scholar
  19. 19.
    C. J. Michejda, M. B. Kroeger-Koepke, S. R. Koepke, P. N. Magee, and C. Chu, Nitrogen Formation during In Vivo and In Vitro Metabolism of N-Nitrosamines, in: “Nitrosamines and Human Cancer,” Banbury Report 12, P. N. Magee, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  20. 20.
    M. B. Kroeger-Koepke, S. R. Koepke, G. A. McClusky, P. N. Magee, and C. J. Michejda, Alpha-hydroxylation Pathway in the In Vitro Metabolism of Carcinogenic Nitrosamines: N-Nitrosodimethylamine and N-nitrosoN-methylaniline, Proc. Natl. Acad. Sci. U.S.A. 78: 6489 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    K. E. Appel, D. Schrenk, M. Schwartz, B. Mahr, and W. Kunz, Denitrosation of N-Nitrosomorpholine by Liver Microsomes; Possible Role of Cytochrome P-450, Cancer Lett. 9: 13 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    N. A. Lorr, Y. Y. Tu, and C. S. Yang, The Nature of Nitrosamine Denitrosation by Rat Liver Microsomes, Carcinogenesis 3: 1039 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Kawachi, K. Kogure, Y. Kamijo, and T. Sugimura, The Metabolism of N-Methyl-N’-nitro-N-nitrosoguanidine in Rats, Biochim. Biophys. Acta 222: 409 (1970).PubMedCrossRefGoogle Scholar
  24. 24.
    D. E. Jensen, Denitrosation as a Determinant of Nitrosocimetidine In Vivo Activity, Cancer Res. 43: 5258 (1983).PubMedGoogle Scholar
  25. 25.
    J. Gal, C. D. Estin, and B. J. Moon, In Vitro Reductive Metabolism of N-Nitrosodibetzylamine: Evidence for New Reactive Intermediates, Biochem. Biophys. Res. Comm. 85:1466 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Tatsumi, H. Yamada, and S. Kitamura, Reductive Metabolism of NNitrosodiphenylamine to the Corresponding Hydrazine Derivative, Arch. Biochem. Biophys. 226: 174 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    P. N. Magee, Chemical Carcinogenesis, in: “Accomplishments in Cancer Research,” J. G. Fortner and J. E. Rhoads, eds., Lippincott, Philadelphia (1981).Google Scholar
  28. 28.
    A. E. Pegg, Alkylation and Subsequent Repair of DNA after Exposure to Dimethylnitrosamine and Related Carcinogens, in: “Reviews in Biochemical Toxicology,” Volume 5, E. Hodgeson, J. R. Bend, and R. M. Philpot, eds., Elsevier, New York (1983).Google Scholar
  29. 29.
    R. Saffhill, G. P. Margison, and P. J. O’Connor, Mechanisms of Carcinogenesis Induced by Alkylating Agents, Biochim. Biophys. Acta 823: 111 (1985).PubMedGoogle Scholar
  30. 30.
    B. Singer, N-Nitroso Alkylating Agents: Formation and Persistence of Alkyl Derivatives in Mammalian Nucleic Acids as Contributing Factors in Carcinogenesis, J. Nat. Cancer Inst. 62:1329 (979).Google Scholar
  31. 31.
    L. L. Gerchman and D. B. Ludlum, The Properties of 0 -Methylguanine in Templates for RNA Polymerase, Biochim. Biophys. Acta 308: 310 (1973).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Lijinsky, Interaction with Nucleic Acids of Carcinogenic and Muta-genic N-Nitroso Compounds, Prog. Nucleic Acid Res. Mol. Biol. 17: 247Google Scholar
  33. 33.
    W. Lijinsky, Structure-activity Relations in Carcinogenesis by N-Nitroso Compounds, in; “Genotoxicology of N-Nitroso Compounds,” T. K. Rao, W. Lijinsky, and J. L. Epler, eds., Plenum Press, New York (1984).Google Scholar
  34. 34.
    W. Lijinsky, M. D. Reuber, and W. B. Manning, Potent Carcinogenicity of Nitrosodiethanolamine in Rats, Nature 288: 589 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    W. Lijinsky and R. M. Kovatch, Induction of Liver Tumors in Rats by Nitrosodiethanolamine at Low Doses, Carcinogenesis, in press (1986).Google Scholar
  36. 36.
    C. P. Wil.d, G. Smart, R. Saffhill, and J. M. Boyle, Radioimmunoassay of 0 -methyldeoxyguanosine in DNA of Cells Alkylated In Vitro and In Vivo, Carcinogenesis 4: 1605 (1983).Google Scholar
  37. 37.
    J. Adamkiewicz, P. Nehls, and M. F. Rajewsky, Immunological Methods for Detection of Carcinogen-DNA Adducts, in: “Monitoring Human Exposure to Carcinogenic and Mutagenic Agents,” A. Berlin, M. Draper, K. Hemminki, and H. Vainio, eds., IARC Scientific Publications No. 59, International Agency for Research on Cancer, Lyon (1984).Google Scholar
  38. 38.
    J. Sakshaug, E. Sögnen, M. A. Hansen, and N. Koppang, Dimethylnitrosamine, Its Hepatotoxic Effect in Sheep and its Occurrence in Toxic Batches of Herring Meal, Nature 206: 1261 (1965).PubMedCrossRefGoogle Scholar
  39. 39.
    D. H. Fine, Analytical Methods for Nitrosamines-An Overview, in: “Nitrosamines and Human Cancer,” Banbury Report 12, P. N. Magee, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  40. 40.
    W. Lijinsky, L. Keefer, E. Conrad, and R. Van de Bogart, Nitrosation of Tertiary Amines and Some Biologic Implications, J. Nat. Cancer Inst. 49: 1239 (1972).PubMedGoogle Scholar
  41. 41.
    S. R. Tannenbaum, D. Moran, K. R. Falchuk, P. Correa, and C. Cuello, Nitrite Stability and Nitrosation Potential in Human. Gastric Juice, Cancer Lett. 14: 131 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    W. Lijinsky, Reaction of Drugs with Nitrous Acid as a Source of Carcinogenic Nitrosamines, Cancer Res. 34: 255 (1974).PubMedGoogle Scholar
  43. 43.
    W. Lijinsky, Significance of In Vivo Formation of N-Nitroso Compounds, Oncology 37: 223 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    H. Ohshima and H. Bartsch, Quantitative Estimation of Endogenous Nitrosation in Humans by Monitoring N-Nitrosoproline Excreted in the Urine, Cancer Res. 41: 3658 (1981).PubMedGoogle Scholar
  45. 45.
    H. Garcia and W. Lijinsky, Studies on the Tumorigenic Effect in Feeding of Nitrosamino Acids and Low Doses of Amines and Nitrite to Rats, Z. Kerbsforsch. 79: 141 (1973).Google Scholar
  46. 46.
    S. S. Mirvish, O. Bulay, R. G. Runge, and K. Patil, Study of the Carcinogenicity of Large Doses of Dimethylnitramine, N-Nitroso-L-proline and Sodium Nitrite Administered in Drinking Water to Rats, J. Nat. Cancer Inst. 64: 1435 (1980).PubMedGoogle Scholar
  47. 47.
    R. E. Dailey, R. C. Braunberg, audit. M. Blaschka, The Absorption, Distribution and Excretion of [C]Nitrosoproline by Rats, Toxicology 3: 23 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Chu and P. N. Magee, Metabolic Fate of Nitrosoproline in the Rat, Cancer Res. 41: 3653 (1981).PubMedGoogle Scholar
  49. 49.
    D. H. Fine, R. Ross, D. P. Rounbehler, A. Silvergleid, and L. Song, Formation In Vivo of Volatile N-Nitrosamine in Man after Ingestion of Cooked Bacon and Spinach, Nature 265: 753 (1977).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Yamamoto, T. Yamada, and A. Tanimura, Volatile Nitrosamines in Human Blood Before and After Ingestion of a Meal. Containing High Concentrations of Nitrate and Secondary Amines, Fd. Cosmet. Toxicol. 18: 297 (1980).CrossRefGoogle Scholar
  51. 51.
    L. Lakritz, M. L. Simenhoff, S. R. Dunn, and W. Fiddler, N-Nitrosodimethylamine in Human Blood, Fd. Cosmet. Toxicol. 18: 77 (1980).CrossRefGoogle Scholar
  52. 52.
    L. Lakritz, R. A. Gates, A. M. Gugger, and A. E. Wassetman, Nitrosamine Levels in Human Blood, Urine and Gastric Aspirate following Ingestion of Food Containing Potential Nitrosamine Precursors or Preformed Nitrosamines, Fd. Cosmet. Toxicol. 20: 455 (1982).Google Scholar
  53. 53.
    A. A. Melikian, E. J. LaVoie, D. Hoffman, and E. L. Wynder, Volatile Nitrosamines: Analysis in Breast Fluid and Blood of Non-lactating Women, Fd. Cosmet. Toxicol. 19; 757 (1981).CrossRefGoogle Scholar
  54. 54.
    T. A. Gough, K. S. Webb, and P. F. Swann, An Examination of Human Blood for the Presence of Volatile Nitrosamines, Fd. Cosmet. Toxicol. 21: 151 (1983).Google Scholar
  55. 55.
    W. A. Garland, H. Holowaschenko, G. W. Kuenzig, E. P. Norkus, and A. H. Conney, A High Resolution Mass Spectrometry Assay for N-Nitrosodimethylamine in Human Plasma, 1.i1: “Nitrosamines and Human Cancer,” P. N. Magee, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  56. 56.
    M. L. Simenhoff, S. R. Dunn, R. G. Kirkwood, W. Fiddler, and J. W. Pensabene, Presence of Nitrosamines in Blood of Normal and Diseased Human Subjects, in: “Nitrosamines and Human Cancer,” P. N. Magee, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  57. 57.
    G. Eisenbrand, B. Spiegelhalder, and R. Preussman, Analysis of Human Biological Specimens for Nitrosamine Contents, in: “Gastrointestinal Cancer: Endogenous Factors,” Banbury Report 7, W. R. Bruce, P. Correa, M. Lipkin, S. R. Tannenbaum, and T. D. Wilkins, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor (1981).Google Scholar
  58. 58.
    G. Ellen, P. L. Schuller, P. G. A. M. Froeling, and E. Bruijns, No Volatile N-Nitrosamines Detected in Blood and Urine from Patients Ingesting Daily Large Amounts of Ammonium Nitrate, Fd. Cosmet. Toxicol. 20: 879 (1982).Google Scholar
  59. 59.
    M. I. Diaz Gomez, P. F. Swann, and P. N. Magee, The Absorption and Metabolism in Rats of Small Oral Doses of Dimethylnitrosamine, Biochem. J. 164: 497 (1977).Google Scholar
  60. 60.
    A. E. Pegg and W. Perry, Alkylation of Nucleic Acids and Metabolism of Small Doses of Dimethylnitrosamine in the Rat, Cancer Res. 41: 3128 (1981).PubMedGoogle Scholar
  61. 61.
    P. F. Swann, A. M. Coe, and R. Mace, Ethanol and Dimethylnitrosamine and Diethylnitrosamine Metabolism and Disposition in the Rat. Possible Relevance to the Influence of Ethanol on Human Cancer Incidence, Carcinogenesis 5: 1337 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    B. Spiegelhalder and R. Preussmann, In Vivo Nitrosation of Amidopyrine in Humans: Use of “Ethanol Effect” for Biological Monitoring of N-Nitrosodimethylamine in Urine, Carcinogenesis 6:545 (1985).Google Scholar
  63. 63.
    P. N. Magee, The Role of the Liver in Chemical Carcinogenesis, Panminerva Medica 18: 427 (1976).PubMedGoogle Scholar
  64. 64.
    J. Hall, H. Bresil, and R. Montesano, 06-Alkylguanine DNA Transferase Activity in Human, Monkey, and Rat Liver, Carcinogenesis 6: 209 (1985).PubMedCrossRefGoogle Scholar
  65. 65.
    R. M. Hicks, Nitrosamines as Possible Etiological Agents in Bilharzial Bladder Cancer, in: “Nitrosamines and Human Cancer,” Banbury Report 12, P. N. Magee, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  66. 66.
    P. Correa, W. Haenszel, C. Cuello, S. Tannenbaum, and M. Archer, A Model for Gastric Cancer Epidemiology, Lancet 2: 58 (1975).PubMedCrossRefGoogle Scholar
  67. 67.
    S. S. Mirvish, The Etiology of Gastric Cancer. Intragastric Nitrosamide Formation and Other Theories, J. Nat. Cancer. Inst. 71: 631 (1983).Google Scholar
  68. 68.
    J. H. C. Ho, Nasopharyngeal Carcinoma (NPC), Adv. Cancer Res. 15: 57 (1972).PubMedCrossRefGoogle Scholar
  69. 69.
    C. S. Yang, Research on Esophageal Cancer in China: A Review, Cancer Res. 40: 2633 (1980).PubMedGoogle Scholar
  70. 70.
    D. M. Winn, W. J. Blot, C. M. Shy, L. W. Pickle, A. Toledo, and J. F. Fraumeni, Snuff-dipping and Oral Cancer Among Women in the Southern United States, N. Eng. J. Med. 304: 745 (1981).CrossRefGoogle Scholar
  71. 71.
    G. Thé and Y. Ito, ads., “Nasopharyngeal Carcinoma: Etiology and Control,” International Agency for Research on Cancer, Lyon (1978).Google Scholar
  72. 72.
    M. C. Yu, H. J. C. Ho, S. H. Lai, and B. E. Henderson, Cantonese-style Salted Fish as a Cause of Nasopharyngeal Carcinoma: Report of a Case-control Study in Hong Kong, Cancer Res. 46: 956 (1986).PubMedGoogle Scholar
  73. 73.
    D. P. Huang, J. H. C. Ho, D. Saw, and T. B. Teoh, Carcinoma of the Nasal and Paranasal Regions in Rats Fed Cantonese Salted Marine Fish, in: “Nasopharyngeal Carcinoma: Etiology and Control,” G. de-Thé and Y. Ito, eds., International Agency for Research on Cancer, Lyon (1978).Google Scholar
  74. 74.
    L. Y. Fong and E. O. Walsh, Carcinogenic Nitrosamines in Cantonese Salt-dried Fish, Lancet 2: 10302 (1971).Google Scholar
  75. 75.
    D. P. Huang, J. H. C. Ho, and T. A. Gough, Analysis for Volatile Nitrosamines in Salt-preserved Food Stuffs Traditionally Consumed by Southern Chinese, in: “Nasopharyngeal Carcinoma: Etiology and Control,” G. Thé and Y. Ito, eds., International Agency for Research on Cancer, Lyon (1978).Google Scholar
  76. 76.
    D. Umbenhauer, C. P. Wild, R. Montesano, R. Saffhill, J. M. Boylg, N. Huh, U. Kirstein, J. Thomale, M. F. Rajewsky, and S. H. Lu, 0 - Methyldeoxyguanosine in Esophageal DNA among Individuals at High Risk of Esophageal Cancer, Int. J. Cancer 36: 661 (1985).PubMedCrossRefGoogle Scholar
  77. 77.
    International Agency for Research on Cancer, “Tobacco Habits other Than Smoking; Betel-Quid and Aveca-Nut Chewing; and Some Nitroso Compounds,” IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 37, International Agency for Research on Cancer, Lyon (1985).Google Scholar
  78. 78.
    D. Hoffmann and S. S. Hecht, Nicotine-derived N-Nitrosamines and Tobacco-related Cancer: Current Status and Future Directions, Cancer Res. 45: 935 (1985).PubMedGoogle Scholar
  79. 79.
    D. Hoffmann, N. H. Harley, I. Fisenne, J. D. Adams, and K. D. Brunnemann, Carcinogenic Agents in Snuff, J. Nat. Cancer Inst. 76: 435 (1986).PubMedGoogle Scholar
  80. SO. S. S. Hecht, A. Rivenson, J. Braley, J. DiBello, J. D. Adams, and D. Hoffmann, Induction of Oral Cavity Tumors in F344 Rats by Tobacco-specific Nitrosamines and Snuff, Cancer Res., in press (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Peter N. Magee
    • 1
  1. 1.Fels Research Institute and Department of PathologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations