Chemoprevention by Nonnutrient Components of Vegetables and Fruits

  • Diane F. Birt
  • Edward Bresnick
Chapter
Part of the Human Nutrition book series (HUNU, volume 7)

Abstract

This chapter reviews data associating vegetable and fruit consumption with the inhibition of cancer. The next section deals with data on vegetables and fruits: epidemiologic studies, animal studies, and studies using whole vegetable or fruit extracts in metabolic or mutagenicity studies. The rest of the chapter reviews data on a variety of compounds and classes of compounds that have been identified in fruits and/or vegetables and have been studied for their potential as chemopreventive agents. The selection of potential inhibitors discussed in this chapter was not all inclusive because of the tremendous growth in this area of research in the past decade.

Keywords

Ellagic Acid Soybean Trypsin Inhibitor Cruciferous Vegetable Brussels Sprout Polycyclic Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyagi, T., and Umezawa, H., 1975, Structure and activities of protease inhibitors of microbial origin, Cold Spring Harbor Conference of Cell Proliferation 2: 429–454.Google Scholar
  2. Armstrong, B., and Doll, R., 1975, Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices, Int. J. Cancer 15: 617–631.CrossRefGoogle Scholar
  3. Bailey, G. S., Hendricks, J. D., Shelton, D. W., Nixon, J. E., and Pawlowski, N. E., 1987, Enhancement of carcinogenesis by the natural anticarcinogen indole-3-carbinol, J. Natl. Cancer. Inst. 78: 913–917.Google Scholar
  4. Barale, R., Zucconi, D., Bertani, R., and Loprieno, N., 1983, Vegetables inhibit, in vivo, the mutagenicity of nitrite combined with nitrosable compounds, Istituto di Biochimica, Biofisica e Genetica, Universita di Pisa, Italy, Mutat Res. 120: 145–150.CrossRefGoogle Scholar
  5. Barch, D. H., and Fox, C. C., 1988, Selective inhibition of methylbenzylnitrosamine-induced formation of esophageal 06-methylguanine by dietary ellagic acid in rats’, Cancer Res. 48: 7088–7092.Google Scholar
  6. Baumann, J., Buichhausen, F. V., and Wurm, G., 1980, Flavonoids and related compounds as inhibitors of arachidonic acid peroxidation, Prostaglandins 20: 627–639.Google Scholar
  7. Becker, F. F., 1981, Inhibition of spontaneous hepatocarcinogenesis in C3H/HeN mice by Edi Pro A, an isolated soy protein, Carcinogenesis 2: 1213–1214.CrossRefGoogle Scholar
  8. Belman, S., 1983, Onion and garlic oils inhibit tumor promotion, Carcinogenesis 4: 1063–1665.CrossRefGoogle Scholar
  9. Benko, A., Tiboldi, T., and Bardos, J., 1963, The effect of painting with cyclical terpenes on the skin of white mice and on the skin carcinoma developed by benzopyrene painting, Acta Un. Int. Cancer 19: 786–788.Google Scholar
  10. Berenblum, I., and Shubik, P. A., 1947, A new quantitative approach to the study of the stages of chemical carcinogenesis in the mouse’s skin, Br. J. Cancer 1: 383–391.CrossRefGoogle Scholar
  11. Beyeler, S., Testa, B., and Perrissoud, D., 1988, Flavonoids as inhibitors of rat liver monooxygenase activities, Biochem. Pharmacol. 37: 1971–1979.CrossRefGoogle Scholar
  12. Birk, Y., 1961, Purification and some properties of a highly active inhibitor of trypsin and chymotrypsin from soybeans, Biochim. Biophys. Acta 54: 378–381.CrossRefGoogle Scholar
  13. Birt, D. F., Walker, B., Tibbels, M. G., and Bresnick, E., 1986, Anti-mutagenesis and antipromotion by apigenin, robinetin and indole-3-carbinal, Carcinogenesis 7: 959–963.CrossRefGoogle Scholar
  14. Birt, D. F., Pelting, J. C., Pour, P. M., Tibbels, M. G., Schweickert, L., and Bresnick, E., 1987, Enhanced pancreatic and skin tumorgenesis in hamsters and mice, Carcinogenesis 8: 913–917.CrossRefGoogle Scholar
  15. Bjeldanes, L. F., and Chang, G. W., 1977, Mutagenic activity of quercetin and related compounds, Science 197: 577–578.CrossRefGoogle Scholar
  16. Bjelke, E., 1978, Dietary factors and the epidemiology of cancer of the stomach and large bowel, Aktuel. Ernehrangsmed. KIM. Prax. Suppl. 2: 10–17.Google Scholar
  17. Blumberg, P. M., 1981, In vitro studies on the mode of action of the phorbol ester potent tumor promoters, CRC Crit. Rev. Toxicol. 9: 199–234.CrossRefGoogle Scholar
  18. Boyd, J. N., Babish, J. G., and Stoewsand, G. S., 1982, Modification by beet and cabbage diets of aflatoxin B1-induced rat plasma a-foetoprotein elevation, hepatic tumorigenesis, and mutagenicity of urine, Food Chem. Toxicol. 20: 47–52.CrossRefGoogle Scholar
  19. Boyd, J. N., Missubeck, N., and Stoewsand, G. S., 1983, Changes in preneoplastic response to aflatoxin B1 in rats fed green beans, beets or squash, Food Chem. Toxicol. 21: 37–40.CrossRefGoogle Scholar
  20. Bradfield, C. A., and Bjeldanes, L. T., 1984, Effect of dietary indole-3-carbinal on intestinal and hepatic monooxygenase glutathione S-transferase and epoxide hydrolase activities in the rat, Food Chem. Toxicol. 22: 977–982.CrossRefGoogle Scholar
  21. Bradfield, C. A., Chang, Y., and Bjeldanes, L. F., 1985, Effects of commonly consumed vegetables on hepatic xenobiotic-metabolizing enzymes in the mouse, Food Chem. Toxicol. 23: 899–904.CrossRefGoogle Scholar
  22. Brady, J. F., Li, D., Ishizaki, H., and Yang, C. S., 1988, Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities, Cancer Res. 48: 5937–5940.Google Scholar
  23. Brodnitz, M. H., Pollock, C. L., and Vallon, P. P., 1969, Flavor components of onion oil, J. Agr. Food Chem. 17: 760–763.CrossRefGoogle Scholar
  24. Brown, J. P., and Dietrich, P. S., 1979, Mutagenicity of plant flavonols in the Salmonella/mammalian micro-some test, Mutat. Res. 66: 223–240.CrossRefGoogle Scholar
  25. Buening, M. K., Fortner, J. G., Kappas, A., and Conney, A. H., 1978, 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver, Biochem. Biophys. Res. Commun. 82: 348–355.Google Scholar
  26. Buening, M. K., Chang, R. L., Huang, M-T., Fortner, J. G., Wood, A. W., and Conney, A. H., 1981, Activation and inhibition of benzo(a)pyrene and aflatoxin 131 metabolism in human liver microsomes by naturally-occurring flavonoids, Cancer Res. 41: 67–72.Google Scholar
  27. Campbell, T. C., 1977, Nutrition and drug-metabolizing enzymes, Clin. Pharm. Ther. 22: 699–706.Google Scholar
  28. Carp, H., and Janoff, A., 1978, Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants, Am. Rev. Respir. Dis. 118: 617–621.Google Scholar
  29. Carver, J. H., Carrano, A. V., and MacGregor, J. T., 1983, Genetic effects of the flavonols, galangin, kaempferol, and quercetin on Chinese hamster ovary cells in vitro, Mutat. Res. 113: 45–60.CrossRefGoogle Scholar
  30. Cea, G. F. A., Etcheberry, K. F. C., and Dulout, F. N., 1983, Induction of micronuclei in mouse bone marrow by the flavonoid 5,3’,4’-trihydroxy-3,6,7,8-tetramethoxyflavone (THTMF), Mutat. Res. 119: 339–342.CrossRefGoogle Scholar
  31. Chang, R. L., Huang, M-T., Wood, A. W., Wong, C-Q., Newmark, H. L., Yagi, H., Sayer, J. M., Jerina, D. M., and Conney, A. H., 1985, Effect of ellagic acid and hydroxylated flavonoids on the tumorigenicity of benzo(a)pyrene on mouse skin and in the newborn mouse, Carcinogenesis 6: 1127–1133.CrossRefGoogle Scholar
  32. Chernick, S. S., Lepkovsky, S. S., and Chaikoff, I. L., 1948, A dietary factor regulating the enzyme content of the pancreas: Changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soy-bean meal, Am. J. Physiol. 155: 33–41.Google Scholar
  33. Choy, Y. M., Kwok, T. T., Fung, K. P., and Lee, C. Y., 1983, Effect of garlic, Chinese medicinal drugs and amino acids on growth of Erhlich ascites tumor cells in mice, Am. J. Chinese Med. 11: 69–73.CrossRefGoogle Scholar
  34. Chung, F. L., Juchatz, A., Vitarius, J., and Hecht, S. S., 1984, Effects of dietary compounds on hydroxylation of N-nitrosopyrrolidine and N-nitrosonornicotine in rat target tissues, Cancer Res. 44: 2924–2928.Google Scholar
  35. Chung, F. L., Wang, M., and Hecht, S. S., 1985, Effects of dietary indoles and isothiocepanate on N-nitrosodimethylamine and 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone a hydroxylation and DNA methylation in rat liver, Carcinogenesis 6: 539–543.CrossRefGoogle Scholar
  36. Colditz, G. A., Branch, L. G., Lipnick, R. J., Willett, W. C., Rosner, B., Posner, B. M., and Hennekens, C. H., 1985, Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population, Am. J. Clin. Nutr. 41: 32–36.Google Scholar
  37. Corasanti, J., Celik, C., Camiolo, S. M., Mittelman, A., Evers, J. L., Barbasch, A., Hobika, G. H., and Markus, G., 1980, Plasminogen activator content of human colon tumors and normal mucosae: Separation of enzymes and partial purification, J. Natl. Cancer Inst. 65: 345–351.Google Scholar
  38. Corasanti, J. G., Hobika, G. H., and Markus, G., 1982, Interference with dimethylhydrazine induction of colon tumors in mice by e-aminocaproic acid, Science 216: 1020–1021.CrossRefGoogle Scholar
  39. Correa, P., 1981, Epidemiological correlation between diet and cancer frequency, Cancer Res. 41:3685–3690. Cumatte, J. T., Whitten, D. M., and Babior, B. M., 1974, Defective superoxide production by granulocytes from patients with chronic granulomatous disease, N. Engl. J. Med. 290: 593–597.Google Scholar
  40. Daehnfeldt, J. L., 1968, Cytostatic activity and Metabolic effects of aromatic isothiocyanic acid esters. Fibiger Lab., Kongens Lyngby, Denmark, Biochem. Pharm. 17 (4): 511–518.CrossRefGoogle Scholar
  41. Das, M., Bickers, D. R., and Mukhtar, H., 1985, Effect of ellagic acid on hepatic and pulmonary xenobiotic metabolism in mice: Studies on the mechanism of its anticarcinogenic action, Carcinogenesis 6: 1409–1413.CrossRefGoogle Scholar
  42. Desikachar, H. S. R., and De, S. S., 1949, Role of inhibitors in soybean, Science 106: 421–422.CrossRefGoogle Scholar
  43. Diamond, L., O’Brien, T. H., and Baird, W. M., 1980, Tumor promoters and the mechanism of tumor promotion, Adv. Cancer Res. 32: 1–74.CrossRefGoogle Scholar
  44. Dixit, R., and Gold, B., 1986, Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid, Proc. Nat. Acad. Sci. USA 83: 8039–8043.CrossRefGoogle Scholar
  45. Dunning, W. F., and Curtis, M. R., 1958, The noie of indole in incidence of 2-acetylamino fluorene-induced bladder cancer in rats, Proc. Soc. Exp. Biol. Med. 99: 91–95.CrossRefGoogle Scholar
  46. Elegbede, J. A., Elson, C. E., and Qureshi, A., 1984, Inhibition of DMBA-induced mammary cancer by the monoterpene d-limonene, Carcinogenesis 5: 661–664.CrossRefGoogle Scholar
  47. Elegbede, J. A., Elson, C. E., Tanner, M. A., Qureshi, A., and Gould, M. N., 1986a, Regression of rat primary mammary tumors following d-limonene, J. Natl. Cancer Inst. 76: 323–325.Google Scholar
  48. Elegbede, J. A., Maltzman, T. H., Verma, A. K., Tanner, M. A., Elson, C. E., and Gould, M. N. (1986b), Mouse skin tumor promoting activity of orange peel oil and d-limonene: A reevaluation, Carcinogenesis 7: 2047–2049.CrossRefGoogle Scholar
  49. Fenwick, G. R., Heaney, R. K., and Mullin, W. J., 1982, Glucosinulates and their breakdown products in foods and food plants, CRC Grit. Rev. Food. Sci. Nutr. 18: 123–201.CrossRefGoogle Scholar
  50. Fong, A. T., Swanson, H. I., Dashwood, R. H., Williams, D. E., Hendricks, J. D., and Bailey, G. S., 1990, Mechanisms of anti-carcinogenesis by indole-3-carbinol. Studies of enzyme induction, electrophile-scavenging, and inhibition of aflatoxin B1 activation, Biochem. Pharmacol. 39: 19–26.CrossRefGoogle Scholar
  51. Francis, A. R., Shetty, T. K., and Bhattacharya, R. K., 1989, Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N’-nitro-N-nitrosoguanidine, Carcinogenesis 10: 1953–1955.CrossRefGoogle Scholar
  52. Fujiki, H., Tanaka, Y., Miyake, R., Kikkawa, U., Nishizuka, Y., and Sugimura, T., 1984, Action of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) by new classes of tumor promoters; Teleocidin and debromoaplysiatoxin, Biochem. Biophys. Res. Commun. 120: 339–343.CrossRefGoogle Scholar
  53. Fujiki, H., Horiuchi, T., Yamashita, K., Hakii, H., Suganuma, M., Nishino, H., Iwashima, A., Hirata, Y., and Sugimura, T., 1986, Inhibition of tumor promotion by flavonoids, in: Plant Flavonoids in Biology and Medicine ( V. Cody, E. Middleton, Jr., and J. B. Marbone, eds.), Alan R. Liss, New York, pp. 429–440.Google Scholar
  54. Godlewski, C. E., Boyd, J. N., Sherman, W. K., Anderson, J. L., and Stoewsand, G. S., 1985, Hepatic glutathione S-transferase and aflectoxin By-induced enzyme altered foci in rats fed fractions of brussels sprouts, Cancer Lett. 28: 151–157.CrossRefGoogle Scholar
  55. Goldstein, B. D., Witz, G., Amoroso, M., and Troll, W., 1979, Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption, Biochem. Biophys. Res. Commun. 88: 854–860.CrossRefGoogle Scholar
  56. Gould, M. N., Maltzman, T. H., Boston, J. L., Tanner, M. A., Sattler, C. A., and Elson, C. E., 1986, The anticarcinogenic action of d-limonene at initiation and promotion/progression in the rat mammary gland, Proc. Am. Assoc. Cancer Res. 27: 131.Google Scholar
  57. Graham, S., Schotz, W., and Martino, P., 1972, Alimentary factors in the epidemiology of gastric cancer, Cancer 30: 927–938.CrossRefGoogle Scholar
  58. Graham, S., Dayal, H., Swanson, M., Mittelman, A., and Wilkinson, G., 1978, Diet in the epidemiology of cancer of the colon and rectum, J. Natl. Cancer Inst. 51: 709–714.Google Scholar
  59. Gschwendt, M., Horn, F., Lottstein, W., and Marks, F., 1983, Inhibition of the calcium and phospholipid dependent protein kinase activity from mouse brain cytosol by quercetin, Biochem. Biophys. Res. Commun. 117: 444–447.CrossRefGoogle Scholar
  60. Haenszel, W., Kurihara, M., Segi, M., and Lee, R. K. C., 1972, Stomach cancer among Japanese in Hawaii, J. Natl. Cancer Inst. 49: 969–988.Google Scholar
  61. Haenszel, W., Kurihara, M., Locke, F. B., Shimuzu, K., and Segi, M., 1976, Stomach cancer in Japan, J. Natl. Cancer Inst. 56: 265–274.Google Scholar
  62. Hagiwara, M., Inoue, S., Tanaka, T., Nunoki, K., Ito, M., and Hidaka, H., 1988, Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases, Biochem. Pharmacol. 37: 2987–2992.CrossRefGoogle Scholar
  63. Harborne, J. B., Mabry, T. J., and Mabry, H., 1975, The Flavonoids, Academic Press, New York, pp. 10111014, 1033–1036.Google Scholar
  64. Hendrich, S., and Bjeldanes, L. F., 1983, Effects of dietary cabbage, brussels sprouts, Illicium verum, schizandra, chinensis and alfalfa on the benzo(a)pyrene metabolic system in mouse liver, Food Chem. Toxicol. 21: 479–486.CrossRefGoogle Scholar
  65. Hirayama, T., 1977, Changing patterns of cancer in Japan with special reference to the decrease in stomach cancer mortality, in: Origins of Human Cancer. Book A: Incidence of Cancer in Humans ( H. H. Hiatt, J. D. Watson, and J. H. Winston, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 55–75.Google Scholar
  66. Hirono, I., Ueno, I., Hosaka, S., Takanashi, H., Matsushima, T., Sugimura, T., and Natori, S., 1981, Carcinogenicity examination of quercetin and rutin in ACI rats, Cancer Lett. 13: 15–21.CrossRefGoogle Scholar
  67. Hirose, M., Fukushima, S., Sakata, T., Inui, M., and Ito, N., 1983, Effect of quercetin on two-stage carcinogenesis of the rat urinary bladder, Cancer Leu. 21: 23–27.CrossRefGoogle Scholar
  68. Homburger, E, Treger, A., and Boger, E., 1971, Inhibition of murine subcutaneous intravenous benzo(rjt)pentaphene carcinogenesis by sweet orange oils and d-limonene, Oncology 25: 1–10.CrossRefGoogle Scholar
  69. Hope, W. C., Welton, A. F., Fielder-Nagy, C., Batula-Bernardo, C., and Coffey, J. M., 1983, In vitro inhibition of the biosynthesis of slow reacting substance of anaphylaxis (SRS-A) and lipoxygenase activity by quercetin, Biochem. Pharmacol. 32: 367–371.Google Scholar
  70. Hopp, M. L., Matsumoto, M., Wendell, B., Lee, C., and Oyasu, R., 1976, Suppressive role of indole on 2acetylaminofluorene hepatotoxicity, Cancer Res. 36: 234–239.Google Scholar
  71. Huang, M-T., Wood, A. W., Newmark, H. L., Sayer, J. M., Yagi, H., Jerina, D. M., and Conney, A. H., 1983, Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by phenolic plant flavonoids, Carcinogenesis 4: 1631–1637.CrossRefGoogle Scholar
  72. Igimi, H., Hisatsuge, T., and Nishimu, M. M., 1976, The use of d-limonene preparation as a dissolving agent of gallstones, Dig. Dis. 21: 926–939.CrossRefGoogle Scholar
  73. Ikenate, T., Odani, S., and Kende, T., 1974, Chemical structure and inhibitory activities of soybean proteinase inhibitors, in: Proteinase Inhibitors ( J. Fritz, H. Tschesche, L. H. Greene, and E. Truscheit, eds.), Springer-Verlag, New York, pp. 325–343.Google Scholar
  74. Janoff, A., Carp, H., Lee, D. K., and Drew, R. T., 1979, Cigarette smoke inhalation decreases alphalantitrypsin activity in rat lung, Science 206: 1313–1314.CrossRefGoogle Scholar
  75. Josephsson, E., 1967, Distribution of thioglucoside in different parts of Brassica plants, Phytochemistry 5: 1617–1627.CrossRefGoogle Scholar
  76. Kato, R., Nakadate, T., Yamamoto, S., and Sugimura, T., 1983, Inhibitor of 12-O-tetradecanoyl phorbol-13acetate-induced tumor promotion and ornithine decarboxylase activity by quercetin: Possible involvement of lipooxygenase inhibition, Carcinogenesis 4: 1301–1305.CrossRefGoogle Scholar
  77. Kennedy, A. R., and Little, J. B., 1978, Protease inhibitors suppress radiation-induced malignant transformation in vitro, Nature 276: 825–826.CrossRefGoogle Scholar
  78. Kennedy, A. R., and Little, J. B., 1981, Effects of protease inhibitors on radiation transformation in vitro, Cancer Res. 41: 2103–2108.Google Scholar
  79. Kitajima, T., Murakami, Y., and Morii, S., 1975, Effect of indole on rat esophageal carcinoma induced by Nnitrosodibutylamine (DBN), Dept. Path., Kansai Med. Univ., Moriguchi, Japan Gann, Proc., Jpn. Cancer Assoc., 33rd annual meeting, October 1974, Japanese Cancer Association, Tokyo, p. 66.Google Scholar
  80. Kjaer, A., 1961, Naturally occurring isothiocyanates and their parent gly-cosides, in: Chemistry of Organic Sulfur Compounds, Volume 1 ( N. Kharasch, ed.), Pergamon Press, Elmsford, NY, pp. 409–420.Google Scholar
  81. Kunitz, M., 1945, Crystallization of a trypsin inhibitor from soybean, Science 101:668–669. Kunitz, M., 1947, Crystalline soybean trypsin inhibitor, J. Gen. Physiol. 30: 291–310.CrossRefGoogle Scholar
  82. Lacassagne, A., Hurst, L., and Xuong, M. D., 1970, p-Dimethylaminoazobenzene (DAB) hepatocacinogenesis in rats: Inhibition by two naphthylisothiocyanates, Inst. Radium, Paris, France, CR Soc. Biol. (Paris) 164(2):230–233.Google Scholar
  83. Lai, C. N., 1979, Chlorophyll: the active factor in wheat sprout extract inhibiting the metabolic activation of carcinogens in vitro, Nutr. Cancer 1 (3): 19–21.CrossRefGoogle Scholar
  84. Lai, C. N., Butler, M. A., and Matney, T. S., 1980, Antimutagenic activities of common vegetables and their chlorophyll content, Mutat. Res. 77: 245–250.CrossRefGoogle Scholar
  85. Laskowski, M., Jr., and Kato, I., 1980, Protein inhibitors of proteinases, Annu. Rev. Biochem. 49: 593–626.CrossRefGoogle Scholar
  86. Le Marchand, L., Yoshizawa, C. N., Kolonel, L. N., Hankin, J. H., and Goodman, M. T., 1989, Vegetable consumption and lung cancer risk: A population-based case-control study in Hawaii, JNCI 81: 1158–1164.CrossRefGoogle Scholar
  87. Leiter, J., Wodinsky, I., and Bourke, A. R., 1959, Screening data from the cancer chemotherapy National Service Center Screening laboratories, Cancer Res. 51 (Suppl.): 309–396.Google Scholar
  88. Lemon, F. R., and Walden, R. T., 1966, Death from respiratory system disease among Seventh-day Adventist men, JAMA 198: 117–126.CrossRefGoogle Scholar
  89. Lemon, F. R., Walden, R. T., and Woods, R. W., 1964, Cancer of the lung and mouth in Seventh-day Adventists, Cancer 17: 486–497.CrossRefGoogle Scholar
  90. Lesca, P., 1983, Protective effects of ellagic acid and other plant phenols on benzo(a)pyrene-induced neoplasia in mice, Carcinogenesis 12: 1651–1653.CrossRefGoogle Scholar
  91. Liener, I. E., Deuel, H. J., Jr., and Fevold, H. L., 1949, The effect of supplemental methionine on the nutritive value of diets containing concentrates of soybean trypsin inhibitor, J. Nutr. 39: 325–339.Google Scholar
  92. Loub, W. D., Wattenberg, L. W., and Davis, D. W., 1975, Arylhydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants, J. Natl. Cancer Inst. 54: 985–988.Google Scholar
  93. Lyman, R. L., and Lepkovsky, S. S., 1957, The effect of raw soybean meal and trypsin inhibitor diets on pancreatic enzyme secretion in the rat, J. Nutr. 62: 269–284.Google Scholar
  94. MacGregor, J. T., 1984, Genetic and carcinogenic effects of plant flavonoids: An overview, in: Nutritional and Toxicological Aspects of Food Safety ( M. Friedman, ed.), Plenum Press, New York, pp. 499–526.Google Scholar
  95. MacGregor, J. T., 1986, Mutagenic and carcinogenic effects of flavonoids, Prog. Clin. Biol. Res. 213: 411–424.Google Scholar
  96. MacGregor, J. T., and Gurd, L., 1978, Mutagenicity of plant flavonoids: Structural requirements for mutagenic activity in Salmonella typhimurium, Mutat. Res. 54: 297–309.CrossRefGoogle Scholar
  97. MacGregor, J. T., Carrano, A. V., and MacGregor, J. T., 1983a, Genetic effects of the flavonols, galangin, kaempferol, and quercetin on Chinese hamster ovary cells in vitro, Mutat. Res. 113: 45–60.CrossRefGoogle Scholar
  98. MacGregor, J. T., Wehr, C. M., Manners, G. D., Gurd, L., Minkler, J. L., and Carrano, A. V., 1983b, In vivo exposure to plant flavonols: Influence on frequencies of micronuclei in mouse erythrocytes and sister-chromatid exchange in rabbit lymphocytes, Mutat. Res. 124: 255–270.Google Scholar
  99. MacLennon, R., DeCosta, J., Day, N. E., Law, C. H., Ng, Y. K., and Shanmugaratnam, K., 1977, Risk factors for lung cancer in Singapore Chinese, a population with high female incidence rates, Int. J. Cancer 20: 854–860.CrossRefGoogle Scholar
  100. Maltzman, T. H., Tanner, M. A., Elson, C. E., and Gould, M. N., 1986, Anticarcinogenic activity of specific orange peel oil monotrepenes, Fed. Proc. 45: 970.Google Scholar
  101. Maltzman, T. H., Hurt, L. M., Elson, C. E., Tanner, M. A., and Gould, M. N., 1989, The prevention of nitrosomethylurea-induced mammary tumors by d-limonene and orange oil, Carcinogenesis 10: 781–783.CrossRefGoogle Scholar
  102. Mandal, S., and Stoner, G. D., 1990, Inhibition of N-nitrosobenzylmethylamine-induced esophageal tumorigenesis in rats by ellagic acid, Carcinogenesis 11: 55–61.CrossRefGoogle Scholar
  103. Maruta, A., Ishei, T., and Uyeta, M., 1982, Mutagenicity of quercetin and kaempferol on cultured mammalian cells, Gann 70: 273–276.Google Scholar
  104. Matsumoto, M., Oyasu, R., Hopp, M. L., and Kitajimat, 1977, Supression of dibutylnitrosamine-induced bladder carcinomas in hamsters by dietary indole, J. Natl. Cancer Inst. 58: 1825–1829.Google Scholar
  105. Mettlin, C., and Graham, S., 1979, Dietary risk factors in human bladder cancer, Am. J. Epidemiol. 110: 255–263.Google Scholar
  106. Miller, E. G., Fanous, R., Rivera-Hidalgo, F., Binnie, W. H., Hasegawa, S., and Lam, L. K. T., 1989, The effect of citrus limonoids on hamster buccal pouch carcinogenesis, Carcinogenesis 10: 1535–1537.CrossRefGoogle Scholar
  107. Miller, L. P., 1973, Glycosides, in: Phytochemistry ( L. P. Miller, ed.), Van Nostrand Reinhold, New York, pp. 197–375.Google Scholar
  108. Modan, B., Barrell, V., Lubin, F., Modan, M., Greenberg, R. A., and Graham, S., 1975, Low-fiber intake as an etiologic factor in cancer of the colon, J. Natl. Cancer Inst. 55: 15–18.Google Scholar
  109. Morino, K., Matsukura, N., Kawachi, T., Ohgaki, H., Sugimura, T., and Hirono, I., 1981, Carcinogenicity test of quercetin and rutin in golden hamster by oral administration, Carcinogenesis 3: 93–98.CrossRefGoogle Scholar
  110. Mosel, H., and Hermann, K., 1974, The phenolics of fruit. III. The contents of catechins and hydroxycinnamic acids in pome and stone fruits, Z. Lebensm. Unters. Forsch. 154: 6–11.CrossRefGoogle Scholar
  111. Mukhtar, H., Dason, M., DelTito, Jr., B. J., and Bickers, D. R., 1984a, Protection against 3-methylcholanthrene-induced skin tumorigenesis in Balb/c mice by ellagic acid, Biochem. Biophys. Res. Commun. 49: 751–757.CrossRefGoogle Scholar
  112. Mukhtar, H., DelTito, Jr., B. J., Marcelo, C. L., Das, M., and Bickers, D. R., 1984b, Ellagic acid: A potent naturally-occurring inhibitor of benzo(a)pyrene metabolism and its subsequent glucuronidation, sulfation and covalent binding to DNA in cultured Balb/c mouse keratinocytes, Carcinogenesis 5: 1565–1571.CrossRefGoogle Scholar
  113. Nakadate, T., Yamamoto, S., Ishii, M., and Kato, R., 1982a, Inhibition of 12-O-tetradecanoyl-13-acetate induced epidermal ornithine decarboxylase activity by phospholipase A2 inhibitors and lipoxygenase inhibitors, Cancer Res. 42: 2841–2845.Google Scholar
  114. Nakadate, T., Yamamoto, S., Ishii, M., and Kato, R., 1982b, Inhibition of 12-O-tetradecanoyl-13-acetateinduced epidermal ornithine decarboxylase activity by lipoxygenase inhibitors: Possible role of product(s) of lipoxygenase pathway, Carcinogenesis 3: 1411–1414.CrossRefGoogle Scholar
  115. Nakadate, T., Yamamoto, S., Aizu, E., and Kato, R., 1984, Effects of flavonoids and antioxidants on 12–0tetradecanoyl phorbol-13-acetate-caused epidermal ornithine decarboxylase induction and tumor promotion in relation to lipoxygenase inhibition by these compounds, Gann 75: 214–222.Google Scholar
  116. Nishino, H., Nagao, M., Fujiki, H., and Sugimura, T., 1983, Role of flavonoids in suppressing the enhancement of phospholipid metabolism by tumor promoters, Cancer Lett. 21: 1–8.CrossRefGoogle Scholar
  117. Nishino, H., Nishino, A., Iwashima, A., Tanaka, K., and Matsuura, T., 1984a, Quercetin inhibits the action of 12-O-tetradecacoyl phorbol-13-acetate, a tumor promoter, Oncology 41: 120–123.CrossRefGoogle Scholar
  118. Nishino, H., Iwashima, A., Fujiki, H., and Sugimura, T., 1984b, Inhibition by quercetin of the promoting effect of teleocidin on skin papilloma formation in mice initiated with 7,12-dimethylbenz(a)anthracene, Gann 75: 113–116.Google Scholar
  119. Nixon, J. E., Hendricks, J. D., Pawlowski, N. E., Pereira, C. B., Sinnhuber, R. O., and Bailey, G. S., 1984, Inhibition of aflatoxin B1 carcinogenesis in rainbow trout by flavone and indole compounds, Carcinogenesis 5: 615–619.CrossRefGoogle Scholar
  120. Ochiai, M., Nagao, M., Wakabayashi, K., and Sugimura, T., 1984, Superoxide dismutase is one enhancing factor for quercetin mutagenesis in rat liver cytosol by preventing its decomposition, Mutat. Res. 129: 1924.Google Scholar
  121. Ohkoshi, M., 1980, Effect of aprotinin on growth of 3-methylcholanthrene-induced squamous cell carcinoma in mice, Gann 71: 246–250.Google Scholar
  122. Osborne, T. B., and Mendel, L. B., 1917, The use of soybean as food, J. Biol. Chem. 32: 369–387.Google Scholar
  123. Oyasu, R., Miller, D. A., McDonald, J. H., and Hass, G. M., 1963, Neoplasms of rat urinary bladder and liver: Rats fed 2-acetylaminofluorene and indole, Arch. Pathol. 75: 184–190.Google Scholar
  124. Oyasu, R., Kitajima, T., and Hopp, M. L., 1972, Enhancement of urinary bladder tumorigenesis in hamsters by coadministration of 2 acetylaminofluorene and indole, Cancer Res. 32: 2027–2033.Google Scholar
  125. Palladino, M. A., Galton, J. E., Troll, W., and Thorbecke, J. J., 1982, Gamma irradiation-induced mortality: Protective effect of protease inhibitors in chickens and mice, Int. J. Radial. Biol. 41: 183–191.CrossRefGoogle Scholar
  126. Pamucku, A. M., Yalciner, S., Hatcher, J. F., and Bryan, G. T., 1980, Quercetin, a rat intestinal and bladder carcinogen present in bracker fern (Pteridium aquilinum), Cancer Res. 40: 3468–3472.Google Scholar
  127. Pantuck, E. J., 1976, Stimulatory effect of vegetables on intestinal drug metabolism in the rat, J. Pharm. Exp. Ther. 198: 278–283.Google Scholar
  128. Pantuck, E. J., 1979, Stimulatory effect of brussels sprouts and cabbage on human drug metabolism, Clin. Pharm. Ther. 25: 88–95.Google Scholar
  129. Pantuck, E. J., Pantuck, C. B., Anderson, K. E., Wattenberg, L. W., and Conney, A. H., 1984, Effect of brussels sprouts and cabbage on drug conjugations in humans, Clin. Pharmacol. Ther. 35: 161–169.CrossRefGoogle Scholar
  130. Pence, B. C., Buddingh, F., and Yang, S. P., 1986, Multiple dietary factors in the enhancement of dimethylhydrazine carcinogenesis: Main effect of indole-3-carbinol, J. Natl. Cancer Inst. 77: 269–276.Google Scholar
  131. Phillips, R. L., 1975, Role of life-style and dietary habits in risk of cancer among Seventh-day Adventists, Cancer Res. 35: 3513–3522.Google Scholar
  132. Pierpoint, W. S., 1986, Flavonoids in the human diet, in: Plant Flavonoids in Biology and Medicine. Biochemical, Pharmacological, and Structure-Activity Relationships ( V. Cody, E. Middleton, Jr., and J. B. Harborne, eds.), Alan R. Liss, New York, pp. 125–140.Google Scholar
  133. Reddy, B. S., Hanson, D., Mathews, L., and Sharma, C., 1983, Effect of micronutrients, antioxidants and related compounds, mutagenicity of 3,2’-dimethyl-4-aminobiphenyl, a colon and carcinogen, MEDL/ 83/12372, Food Chem. Toxicol. 21 (2): 129–132.CrossRefGoogle Scholar
  134. Richardson, J., 1977, The proteinase inhibitors of plants and microorganisms, Phytochemistry 16:159–169. Rieder, A., Adamek, M., and Wrba, H., 1983, Delay of diethylnitrosamine-induced hepatoma in rats by carrot feeding, Oncology 40: 120–123.Google Scholar
  135. Roe, F. J. C., and Pierce, W. E. H., 1960. Tumor promotion by citrus oils: Tumors of the skin and urethral orfice in mice, J. Natl. Cancer Inst. 24: 1289–1403.Google Scholar
  136. Ryan, C. A., 1973, Proteolytic enzymes and their inhibitors in plants, Annu. Rev. Plant Physiol. 24:173–199. Sahu, R. K., Basu, R., and Sharma, A., 1981, Genetic toxicological testing of some plant flavonoids by the micronucleus test, Mutat. Res. 89: 69–74.Google Scholar
  137. Saito, D., Shirai, A., Matsushima, T., Sugimura, T., and Hirono, I., 1980, Test of carcinogenicity of quercetin, a widely distributed mutagen in food, Terat. Carc. Mutagen 1: 213–221.CrossRefGoogle Scholar
  138. Samuelsson, 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568–575.CrossRefGoogle Scholar
  139. Sasaki, S., 1963, Inhibitory effects of alpha-naphthylisothiocyanate on the development of hepatoma in rats treated with 3’methyl 4 dimethylaminoazobenzene, J. Nara Med. Assoc. 14: 101–115.Google Scholar
  140. Sayer, J. M., Yagi, H., Wood, A. W., Conney, A. H., and Jerina, D. M., 1982, Extremely facile reaction between the ultimate carcinogen benzo(a)pyrene 7,8-diol 9,10-epoxide and ellagic acid, J. Am. Chem. Soc. 104: 5562–5564.CrossRefGoogle Scholar
  141. Schmidtlein, H., and Hermann, K., 1975, On phenolic acids of vegetables. Hydroxycinnamic acids and hydroxybenzoic acids of Brassica species and leaves of other Cruciferae, Z. Lebensm. Unters. Forsch. 159: 139–148.CrossRefGoogle Scholar
  142. Scholar, E. M., Wolterman, K., Birt, D. F., and Bresnick, E., 1989, The effect of diets enriched in cabbage and collards on murine pulmonary metastasis, Nutr. Cancer 12: 121–126.CrossRefGoogle Scholar
  143. Shaw, P. E., 1977, Essential oils, in: Citrus Science and Technology ( S. Nagy, P. E. Shaw, and M. K. Veldhuis, eds.), AVI Publ., Westport, CT, pp. 427–478.Google Scholar
  144. Shertzer, H. G., 1983, Protection by indolel-3-carbinol against covalent binding of benzo(a)pyrene metabolites to mouse liver DNA and protein, ICDB/83/12418, Food Chem. Toxicol. 21 (1): 31–35.CrossRefGoogle Scholar
  145. Shertzer, H. G., 1984, Indole-3-carbinol protects against covalent binding of benzo(a)pyrene and N-nitrosodimethylamine metabolites to mouse liver macromolecules, MEDL/83/50733, Chem. Biol. Interact. 48 (1): 81–90.CrossRefGoogle Scholar
  146. Shugar, L., and Kao, J., 1984, Effect of ellagic and caffeic acids on covalent binding of benzo(a)pyrene to epidermal DNA of mouse skin in organ culture, Int. J. Biochem. 16: 571–573.CrossRefGoogle Scholar
  147. Sims, J., and Renwick, A. G., 1985, The microbial metabolism of tryptopran in rats fed a diet containing 7.5% saccharin in a two-generation protocal, Food Chem. Toxicol. 23: 437–444.CrossRefGoogle Scholar
  148. Sousa, R. L., and Marietta, M. A., 1985, Inhibition of cytochrome P450 activity in rat liver microsomes by the naturally-occurring flavonoid, quercetin, Arch. Biochem. Biophys. 240: 345–357.CrossRefGoogle Scholar
  149. Spamins, V. L., and Wattenberg, L. W., 1981, Enhancement of glutathione S-transferase activity of the mouse forestomach by inhibitors of benzo(a)pyrene-induced neoplasia of the forestomach, J. Natl. Cancer Inst. 66: 769–771.Google Scholar
  150. Sparnins, V. L., Chean, J., and Wattenberg, L. W., 1982a, Enhancement of glutathione S-transferase activity of the esophagus by phenols, lactones and benzyl isothiocyanate, Cancer Res. 42: 1205–1207.Google Scholar
  151. Spamins, V. L., Venegas, P. L., and Wattenberg, L. W., 1982b, Glutathione S-transferase activity: Enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J. Natl. Cancer Inst. 68: 493–496.Google Scholar
  152. Sparnins, V. L., Mott, A. W., Barany, G., and Wattenberg, L. W., 1986, Effects of allyl methyl trisulfide on glutathione S-transferase activity and BP-induced neoplasia in the mouse, Nutr. Cancer 8: 211–215, 1986.CrossRefGoogle Scholar
  153. Srisanganam, C., Hendricks, D. G., Sharma, R. P., Salunkhe, D. K., and Mahoney, A. W., 1980, Effects of dietary cabbage (Brassica oleraces L.) on the tumorigenicity of 1,2-dimethylhydrazine in mice, ICDB/ 81/16469, J. Food Safety 2: 235–245.CrossRefGoogle Scholar
  154. Steamer, S. P., and Azuma, S. A., 1968, Early radiation lethality: Enzyme release and the protective action of soybean trypsin inhibitor, Proc. Soc. Exp. Biol. Med. 128: 913–917.CrossRefGoogle Scholar
  155. Steramer, S. P., Brues, A. M., Sanderson, M., and Christian, E. J., 1955, Role of hypotension in the initial response of X-irradiated chicks, Am. J. Physiol. 182: 407–410.Google Scholar
  156. Stoewsand, G. S., Babish, J. B., and Wimberly, H. C., 1978, Inhibition of hepatic toxicity from polybrominated biphenyls and aflatoxin B1 in rats fed cauliflower, J. Envir. Path. Toxicol. 2: 399–406.Google Scholar
  157. Sugimura, T., Nagao, M., Matusushima, T., Yahagi, T., Seino, Y., Shirai, A., Sawamura, M., Natori, S., Yoshihira, K., Fukuoka, M., and Kuroyanagi, M., 1977, Mutagenicity of flavone derivatives, Proc. Jpn. Acad., Ser. B. 53: 194–197.Google Scholar
  158. Swain, T., 1986, The evolution of flavonoids, Prog. Clin. Biol. Res. 213: 1–14.Google Scholar
  159. Takanishi, H., Aiso, S., Hirono, I., Matsushima, T., and Sugimura, T., 1983, Carcinogenicity test of quercetin and kaempferol in rats by oral administration, J. Food Safety 5: 55–60.CrossRefGoogle Scholar
  160. Teas, J., Harbison, M. L., and Gelman, R. S., 1984, Dietary seaweed (Laminaria) and mammary carcinogenesis in rats, Cancer Res. 44: 2758–2761.Google Scholar
  161. Teel, R. W., 1986, Ellagic acid binding to DNA as a possible mechanism for its antimutagenic and anticarcinogenic action, Cancer Lett. 30: 329–336.CrossRefGoogle Scholar
  162. Teel, R. W., Dixit, R., and Stoner, G. D., 1985, The effect of ellagic acid on the uptake, persistence, metabolism and DNA-binding of benzo(a)pyrene in cultured explants of strain A/J mouse lung, Carcinogenesis 6: 391–395.CrossRefGoogle Scholar
  163. Temple, Norman, J., and El-Khatib, Shukri M., 1987, Cabbage and vitamin E: Their effect on colon tumor formation in mice, Cancer Lett. 35: 71–77.Google Scholar
  164. Terwel, L., and van der Hoeven, J. C. M., 1985, Antimutagenic activity of some naturally occurring compounds towards cigarette smoke condensate and benzo(a)pyrene in the Salmonella microsome assay, Mutat. Res. 152: 1–4.CrossRefGoogle Scholar
  165. Troll, W., Klassen, A., and Janoff, A., 1970, Tumorigenesis in mouse skin: Inhibition by synthetic inhibitors of proteases, Science 169: 1211–1213.CrossRefGoogle Scholar
  166. Troll, W., Hozumi, M., Ogawa, M., Sugimura, T., Takeuichi, T., and Umezawa, H., 1972, Inhibition of tumorigenesis in mouse skin by leupeptin, a protease inhibitor from Actinomycetes, Cancer Res. 32: 1725–1729.Google Scholar
  167. Troll, W., Wiesner, R., Shellabarger, C. J., Holtzman, S., and Stone, J. P., 1980, Soybean diet lowers breast tumor incidence in irradiated rats, Carcinogenesis 1: 469–472.CrossRefGoogle Scholar
  168. Ueno, I., Haraikawa, K., Kohno, M., Hinomoto, T., Ohya-Nishiguchi, H., Tomatsuri, T., and Yoshihara, K., 1986, Possible involvement of superoxide dismutase in Salmonella typhimurium strain TA98, Prog. Clin. Biol. Res. 213: 425–428.Google Scholar
  169. Van Duuren, B. L., and Goldschmidt, B. M., 1976, Cocarcinogenic and tumor promoting agents in tobacco carcinogenesis, J. Natl. Cancer Inst. 56: 1237–1242.Google Scholar
  170. Van Duuren, B. L., Sivak, A., Langseth, L., Goldschmidt, B. M., and Segal, A., 1968, Initiators and promoters in tobacco carcinogenesis, NCI Monogr. 28: 173–180.Google Scholar
  171. Virtanen, A., 1962, Some organic sulfur compounds in vegetables and fodder plants and their significance in human nutrition, Angew Chem. 1: 299–306.CrossRefGoogle Scholar
  172. Virtanen, A., 1965, Studies on organic sulphyr compounds and other labile substances in plants, Phyto. Chem. 4: 207–228.Google Scholar
  173. Wargovich, M. J., 1987, Diallyl sulfide, a flavor component of garlic (allium sativum), inhibits dimethylhydrazine-induced colon cancer, Carcinogenesis 8: 487–489.CrossRefGoogle Scholar
  174. Wargovich, M. J., and Goldberg, M. T., 1985, Diallyl sulfide. A naturally occurring thioether that inhibits carcinogen-induced nuclear damage to colon epithelial cells in vivo, Mutat. Res. 143: 127–129.CrossRefGoogle Scholar
  175. Wargovich, M. J., and Newmark, H. L., 1983, Inability of several mutagen-blocking agents to inhibit 1,2- dimethylhydrazine-induced DNA-damaging activity in colonic epithelium, Mutat. Res. 121: 77–80.CrossRefGoogle Scholar
  176. Wargovich, M. J., Woods, C., Eng, V. W. S., Stephens, L. C., and Gray, K., 1988, Chemoprevention of Nnitrosomethyl-benzylamine-induced esophageal cancer in rats by the naturally occurring thioether, diallyl sulfide, Cancer Res. 48: 6872–6875.Google Scholar
  177. Wattenberg, L. W., 1974, Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by several sulfur-containing compounds, J. Natl. Cancer Inst. 52: 1583–1587.Google Scholar
  178. Wattenberg, L. W., 1977, Inhibiton of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds, J. Natl. Cancer Inst. 58: 395–398.Google Scholar
  179. Wattenberg, L. W., 1980, Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by sodium cyanate, Cancer Res. 40: 232–234.Google Scholar
  180. Wattenberg, L. W., 1981, Inhibition of carcinogen-induced neoplasia by sodium cyanate, tert-butyl isocyanate, and benzyl isothrocyanate administered subsequent to carcinogen exposure, Cancer Res. 41: 2991–2994.Google Scholar
  181. Wattenberg, L. W., 1983, Inhibition of neoplasia by minor dietary constituents, Cancer Res. 43: 2448S - 2453S.Google Scholar
  182. Wattenberg, L. W., and Loub, W. D., 1978, Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles, Cancer Res. 38: 1410–1413.Google Scholar
  183. Wattenberg, L. W., Page, M. A., and Leong, J. L., 1968, Induction of increased benzpyrene hydroxylase activity by flavones and related compounds, Cancer Res. 28: 934–937.Google Scholar
  184. Wattenberg, L. W., Coccia, J. B., and Lam, L. K. T., 1980, Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia, Cancer Res. 40: 2820–2823.Google Scholar
  185. Wei, H., Tye, L., Bresnick, E., and Birt, D. F., 1990, Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice, Cancer Res. 50: 499–502.Google Scholar
  186. Westfall, R. J., Bosshardt, D. K., and Barnes, R. H., 1948, Incidence of crude trypsin inhibitor on utilization of hydrolyzed protein, Proc. Soc. Exp. Biol. Med. 68: 498–500.CrossRefGoogle Scholar
  187. Wheeler, E. L., and Berry, D. L., 1986, In vitro inhibition of mouse epidermal cell lipoxygenase by flavonoids: Structure—activity relationships, Carcinogenesis 7: 33–36.Google Scholar
  188. Whitty, J. P., and Bjeldanes, L. F., 1987, The effects of dietary cabbage on xenobiotic-metabolizing enzymes and the binding of aflatoxin B1 to hepatic DNA in rats, Fd. Chem. Toxic. 25: 581–587.CrossRefGoogle Scholar
  189. Wiebel, F. D., Gelboin, H. V., Buu-Hoi, N. P., Stout, M. G., and Burnham, W. S., 1974, Flavones and polycyclic hydrocarbons as modulators of aryl hydrocarbon hydroxylase, in: Chemical Carcinogenesis ( P. O. P. Ts’o and J. A. DiPaolo, eds.), Marcel Dekker, New York, pp. 249–270.Google Scholar
  190. Wiltrout, R. H., and Hornung, R. L., 1988, Natural products as antitumor agents: Direct versus indirect mechanisms of activity of flavonoids, J. Natl. Cancer Inst. 80: 220–222.CrossRefGoogle Scholar
  191. Witz, G., Goldstein, B. D., Amoruso, M., Stone, D. S., and Troll, W., 1980, Retinoid inhibition of superoxide anion radical production by human polymorphonuclear leukocytes stimulated with tumor promoters, Biochem. Biophys. Res. Communs. 97: 883–888.CrossRefGoogle Scholar
  192. Wood, A. W., Huang, M-T., Chang, R. L., Newmark, H. L., Lehr, R. E., Yagi, H., Sayer, J. M., Jerina, D. M., and Conney, A. H., 1982, Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: Exceptional ability of ellagic acid, Proc. Natl. Acad. Sci. USA 79: 5513–5517.CrossRefGoogle Scholar
  193. Yavelow, J., Gidlund, M., and Troll, W., 1982, Protease inhibitors from processed legumes effectively inhibit superoxide generation in response to TPA, Carcinogenesis 3: 135–138.CrossRefGoogle Scholar
  194. Yavelow, J., Finlay, T. H., Kennedy, A. R., and Troll, W., 1983, Bowman—Birk soybean protease inhibitor as an anticarcinogen, Cancer Res. 43: 2454s - 2459s.Google Scholar
  195. Yoshido, M. A., Sasaki, M., Sugimura, K., and Kawachi, T., 1980, Cytogenetic effects of quercetin on cultured mammalian cells, Proc. Jpn. Acad. 56B: 443–447.CrossRefGoogle Scholar
  196. Yoshimoto, T., Furukawa, M., Yamamoto, S., Horie, T., and Watanabe-Kohno, S., 1983, Flavonoids. Potent inhibitors of arachidonate 5-lipoxygenase, Biochem. Biophys. Res. Commun. 116: 612–618.CrossRefGoogle Scholar
  197. You, W.-C., Blot, W. J., Chang, Y.-S., Ershow, A., Yang, Z. T., An, Q., Henderson, B. E., Fraumeni, J. F., Jr., and Wang, T.-G., 1989, Allium vegetables and reduced risk of stomach cancer, JNCI 81: 162–164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Diane F. Birt
    • 1
  • Edward Bresnick
    • 2
  1. 1.Eppley Institute for Research in Cancer and Allied Diseases and Department of BiochemistryUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmacology and ToxicologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations