Serological Response to Campylobacter Concisus Infection

  • Ning Zhi
  • H. Revets
  • A. Van Zeebroek
  • S. Lauwers

Abstract

Campylobacters are important causes of enteritis worldwide. Campylobacter jejuni and C. coli are the species most commonly involved.3 Recently, several investigators have found an increased proportion of C. concisus, a Campylobacter mainly associated with the oral cavity, in faeces from patients with symptoms of enteritis.5,13 Since we incubate our campylobacter media with filters in an atmosphere containing 7% H2, a large number of C. concisus was isolated in our laboratory. The isolation rate of C. concisus for a 17 month period was 2.4% in children and 1.5% in adults.7 Most of the C. concisus culture-positive patients presented diarrhoea. However, the occasional isolation of C. concisus together with other enteric pathogens from faeces of patients with enteritis and the detection of the organism in many healthy individuals, do not support the etiologic role of C. concisus in patients with enteritis. To clarify the possible pathogenicity of C. concisus, a study of the immune response to C. concisus was needed. The aim of this study was to evaluate the antibody response in a large group of patients with C. concisus culture-positive enteritis using a solid-phase enzyme-linked immunosorbent assay and Western blot analysis.

Keywords

Oral Cavity Molecular Weight Marker Enteric Pathogen Serological Response Antigen Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaser M.J. and Duncan D.J. (1984) Immun. Infect, 44, 292–298.Google Scholar
  2. 2.
    Ebersole J.L., Taubman M.A., Smith D.J., and Haffajee A.D. (1985) Immun. Infect, 48. 534–539.Google Scholar
  3. 3.
    Griffiths P.L. and Park R.W.A. (1990) J. Appl. Bacteriol, 68, 281–301.Google Scholar
  4. 4.
    Nachamkin I. and Hart A.M. (1985) J. Clin. Microbiol, 21, 33–38.PubMedGoogle Scholar
  5. 5.
    Johnson C.C. and Finegold S.M. (1987) Rev. Infect. Dis, 9, 1150–1162.PubMedCrossRefGoogle Scholar
  6. 6.
    Laemmli U.K. (1970) Nature (london), 227, 680–685.CrossRefGoogle Scholar
  7. 7.
    Lauwers S., Devreker T., Van Etterijck R., Breynaert J., Van Zeebroeck A., Smekens L., Kersters K. and Vandamme P. (1991) Microb. Ecol. in Health & Dis, (Suppl), 4, S91.CrossRefGoogle Scholar
  8. 8.
    Logan S. M. and Trust T.J. (1986) J. Bacteriol, 168, 739–745.PubMedGoogle Scholar
  9. 9.
    Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951) J. Biol. Chem, 193, 265–275.PubMedGoogle Scholar
  10. 10.
    Newell D.G. (1986) J. Hyg, 96, 131–141.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanner A.C.R., Badger S., Lai C.H., Listgarten M.A., Visconti R.A. and Socransky S.S. (1981) Int. J. Syst. Bacteriol, 31,432–445.CrossRefGoogle Scholar
  12. 12.
    Towbin H., Staechelin T. and Gordon J. (1979) Proc. Natl. Acad. Sci. USA, 76, 4350–4354.PubMedCrossRefGoogle Scholar
  13. 13.
    Vandamme P., Falsen E., Pot B., Hoste B., Kersters K. and Deley J. (1989) J. Clin. Microbiol, 27. 1775–1781PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ning Zhi
    • 1
  • H. Revets
    • 1
  • A. Van Zeebroek
    • 1
  • S. Lauwers
    • 1
  1. 1.Department of MicrobiologyAkademisch Ziekenhuis, Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations