Balls, Chains, and Potassium Channels

  • Ramón Latorre
  • Enrico Stefani
  • Ligia Toro

Abstract

When depolarized most voltage-dependent channels undergo a process known as inactivation. This molecular rearrangement can take place in a time scale ranging from a few milliseconds to several seconds and is characterized by a decrease in ionic current with time after the onset of a depolarizing voltage pulse.

Keywords

Potassium Channel Voltage Sensor Fast Inactivation Channel Inactivation Inactivation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, J.P., Shen, K.Z., Kavanaugh, M.P., Warren, R.A., Wu, Y.N., Lagrutta, A., Bond, C.T., & North, R.A. (1992). Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9: 209–216.PubMedCrossRefGoogle Scholar
  2. Aldrich, R.W., Hoshi, T., & Zagotta, W.N. (1990). Differences in gating among amino-terminal variants of Shaker potassium channels. Cold Spring Harbor Symp.Quant.Biol. 55: 19–27.PubMedCrossRefGoogle Scholar
  3. Armstrong, C.M., Bezanilla, F., & Rojas, E. (1973). Destruction of sodium conductance inactivation in squid axons perfused with pronase. J.Gen.Physiol. 62: 375–391.PubMedCrossRefGoogle Scholar
  4. Baumann, A., Grupe, A., Ackermann, A., & Pongs, O. (1996). Structure of the voltage-dependent channel is highly conserved from Drosophila to vertebrate central nervous system. EMBO J. 7: 2457–2463.Google Scholar
  5. Beirao, P.S.L., Davies, N.W., & Stanfield, P.R. (1994). Inactivating `ball’ peptide from Shaker B blocks Ca“-activated but not ATP-dependent K’ channels of rat skeletal muscle. J.Physiol.(Lond.) 474: 269–274.Google Scholar
  6. Bezanilla, F. & Armstrong, C.M. (1977). Inactivation of the sodium channel. I. Sodium current experiments. J.Gen.Physiol. 70: 549–566.Google Scholar
  7. Bezanilla, F., Perozo, E., Papazian, D.M., and Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254: 679–683.PubMedCrossRefGoogle Scholar
  8. Choi, K.L., Aldrich. R.W., & Yellen. G. (1991). Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc.Natl.Acad.Sci.USA 88: 5092–5095.CrossRefGoogle Scholar
  9. Collins, A., German, M.S., Jan, Y.-N., Jan, L.Y., & Zhao, B. (1996). A strongly inwardly rectifying K’ channel that is sensitive to ATP. J. Neurosci. 16: 1–9.PubMedGoogle Scholar
  10. Demo, S.D. & Yellen, G. (1991). The inactivation gate of the Shaker K’ channel behaves like an open-channel blocker. Neuron 7: 743–753.PubMedCrossRefGoogle Scholar
  11. Dubinsky, W.P., Mayorga-Wark, 0., & Schultz, S.G. (1992). A peptide from the Drosophila Shaker K’ channel inhibits a voltage-gated K’ channel in basolateral membranes of Nech+rus enterocytes. Proc.Natl.Acad.Sci.USA 89: 1770–1774.Google Scholar
  12. England, S.K., Uebeles, V.N., Kodali, J., Bennett, P.B., & Tamkun, M.M. (1995a). A novel K’ channel h subunit (hKvbl.3) is produced by alternative splicing. J. Biol. Chem. 270: 28531–28534.Google Scholar
  13. England, S.K., Uebele, V.N., Shear, H., Kodali, J., Bennett, P.B., & Tamkun, M.M. (1995). Characterization of a voltage-gated K’ channel b subunit expressed in human heart. Proc. Natl. Acad. Sci. USA 92: 6309–6313.Google Scholar
  14. Fernandez-Ballester, G., Gavillanes, F., Alvar, J.P., Criado, M., Ferragut, J.A., & Gonzales-Ros, J.M. (1995). Adoption of b structure by the inactivating “ball” peptide of the Shaker B potassium channel. Biophys. J. 68: 858–865.Google Scholar
  15. Foster, C.D., Chung, S., Zagotta, W.N., Aldrich, R.W., & Levitan, I.B. (1992). A peptide derived from the Shaker B K` channel produces short and long blocks of reconstituted Ca“-dependent K’ channels. Neuron 9: 229–236.PubMedCrossRefGoogle Scholar
  16. Gomez-Lagunas, F. & Armstrong, C.M. (1995). Inactivation in ShakerB K’ channels: A test for the number of inactivating particles on each channel. Biophys. J. 68: 89–95.Google Scholar
  17. Heinemann, S.H., Rettig,J., & Pongs,O. (1995). Functional expression of three K channel b-subunits. Biophys. J. 68, A361 (Abstr.)Google Scholar
  18. Hoshi, T., Zagotta, W.N., & Aldrich, R.W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250: 533–538.PubMedCrossRefGoogle Scholar
  19. Isacoff, E.Y., Jan, Y.N., & Jan, L.Y. (1991). Putative receptor for the cytoplasmic inactivation gate in the Shaker K’ channel. Nature 353: 86–90.PubMedCrossRefGoogle Scholar
  20. Iverson, L.E. & Rudy, B. (1990). The role of divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila. J. Neurosci. 10: 2903–2916.PubMedGoogle Scholar
  21. Jan, L.Y. & Jan, Y.N. (1990a). A superfamily of ion channels. Nature (London) 345: 672.CrossRefGoogle Scholar
  22. Jan, L.Y. & Jan, Y.N. (19906). How might the diversity of potassium channels be generated. Trends Neurol. Sci. I3: 415–419.Google Scholar
  23. Kamb, A., Tweng-Drank, J., & Tanouye, M.A. (1988). Multiple products of the Drosophila Shaker gene may contribute to poasssium channel diversity. Neuron 1: 421–430.PubMedCrossRefGoogle Scholar
  24. Larsson, H.P., Baker, O.S., Dhillon, D.S., & lsacoff, E.Y. (1996). Transmembrane movement of the Shaker K’ channel S4. Neuron 16: 387–397.PubMedCrossRefGoogle Scholar
  25. Latorre, R. & Labarca, P. (1996). Potassium channels: Diversity, assembly. and differential expression. In: Potassium Channels and Their Modulators: From Synthesis to Clinical Experience, edited by Evans, i.M., Hamilton, T.C., Longman, S.D., & Stemp, G. London: Taylor & Francis, p. 123–156.Google Scholar
  26. Liman, E.R., Tytgat, J., & Hess, P. (1992). Subunit stoichiometry of a mammalian K’ channel determined by construction of multimeric cDNAs. Neuron 9: 861–871.PubMedCrossRefGoogle Scholar
  27. Lopez, G.A., Jan. Y.N., & Jan, L.Y. (1994). Evidence that the S6 segment of the Shaker voltage-gated K channel comprises part of the pore. Nature 367: 179–182.Google Scholar
  28. MacKinnon, R. (1991). Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350: 232–235.PubMedCrossRefGoogle Scholar
  29. MacKinnon, R., Aldrich, R.W., & Lee, A.W. (1993). Functional stoichiometry of Shaker potassium channel inactivation. Science 263: 757–759.CrossRefGoogle Scholar
  30. Majumder,K., DeBiasi,M., Wang,Z., & Wibble,B.A. (1995). Molecular cloning and functional expression of a novel potassium channel b-subunit from human atrium. FEBS Lett. 361: 13–16CrossRefGoogle Scholar
  31. Mannuzzu, L.M., Moronne, M.M., & Isacoff, E.Y. (1996). Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271: 213–216.PubMedCrossRefGoogle Scholar
  32. Meera, P., Wallner, M., Jiang, Z. & Toro, L. (1996). A calcium switch for the functional coupling between a (hslo) and 13 subunits (Kvc.a13) of MaxiK channels. FEBS Lett. 382: 84–88.PubMedCrossRefGoogle Scholar
  33. Miller, C. (1988). Competition for block of a Cat’ -activated K’ channel by charybdotoxin and tetraethylammonium. Neuron 1: 1003–1006.PubMedCrossRefGoogle Scholar
  34. Morales, M.J., Castellino, R.C., Crews, A.L., Rasmusson, R.L., & Strauss, H.C. (1995). A novel b subunit increases rate of inactivation of specific voltage-gated potassium channel a subunit. J.Biol.Chem. 270: 6272–6277.PubMedCrossRefGoogle Scholar
  35. Murrell-Lagnado, R.D. & Aldrich, R.W. (1993a). Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J.Gen.Physiol. 102: 949–975.PubMedCrossRefGoogle Scholar
  36. Murrell-Lagnado, R.D. & Aldrich, R.W. (1993). Energetics of Shaker K channels block by inactivation peptides. J.Gen.Physiol. 102: 977–1003.PubMedCrossRefGoogle Scholar
  37. Nakahira, K., Shi, G., Rhodes, K.J., & Trimmer, J.S. (1996). Selective interactions of voltage-gated K’ channels b-subunits with a-subunits. J.Biol. Chem. 271: 7084–7089.Google Scholar
  38. Nobile,M., Olcese,R., Chen, Y.C., Toro, L., & Stefani,E. (1993). Fast inactivation by the ball peptide in Shaker B channels is highly temperature dependent. Biophys. J. 64, 113a (Abstr.)Google Scholar
  39. Papazian, D.M., Shao, X.M., Seoh, A., Mock, A.F., & Wainstock, D.H. (1995). Electrostatic interactions of S4 voltage sensor in Shaker K’ channels. Neuron 14: 1293–1301.PubMedCrossRefGoogle Scholar
  40. Parcej, D.N., & Dolly, J.O. (1989). Dendrotoxin receptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage K’ channels. Biochem. J. 257: 899–903.Google Scholar
  41. Perozo, E., Santacruz-Toloza, L., Stefani, E., Bezanilla, F., & Papazian, D.M. (1994). S4 mutations alter gating currents of Shaker K channels. Biophys. J. 66: 345–354.Google Scholar
  42. Rettig, J., Heinemann, S.H., Wunder, F., Lorra, C., Parcej, D.N., Dolly, J.O., & Pongs, O. (1994). Inactivation properties of voltage-gated K’ channels altered by presence of b-subunit. Nature 369: 289–294.PubMedCrossRefGoogle Scholar
  43. Roux, M. J., Toro, L., & Stefani, E. (1995). Fast inactivation of ionic currents and “charge immobilization” of Shaker H4 and ShH4 W434F K’ channels. Biophys. J. 68: A137.Google Scholar
  44. Ruppersberg, J.P., Frank, R., Pongs, O., & Stocker, M. (1991a). Cloned neuronal IK(A) channels reopen during recovery from inactivation. Nature 353: 657–660.PubMedCrossRefGoogle Scholar
  45. Ruppersberg, J.P., Stocker, M., Pongs, O., Heinemann, S.H., Frank, R., & Koenen, M. (1991b). Regulation of fastGoogle Scholar
  46. inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714.Google Scholar
  47. Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., & Jan, L.Y. (1988). Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331: 137–142.PubMedCrossRefGoogle Scholar
  48. Solaro, C.R. & Lingle, C.J. (1992). Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel.Google Scholar
  49. Science 257:1694–1698.Google Scholar
  50. Stephens, G.J. & Robertson, B. (1995). Inactivation of the cloned potassium channel mouse Kv1.1 by the human Kv3.4 `ball’ peptide and its chemical modification. J. Physiol. ( London ) 484: 1–13.Google Scholar
  51. Stocker, M., Stuhmer, W., Wittka, R., Wang, X., Muller, R., Ferrus, A., & Pongs, O. (1990). Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proc. Natl. Acad. Sci. USA 87: 8903–8907.Google Scholar
  52. Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.L., & Jan, L.Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237: 770–775.PubMedCrossRefGoogle Scholar
  53. Timpe, L.C., Jan, Y.N., & Jan, L.Y. (1988a). Four eDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1: 659–667.PubMedCrossRefGoogle Scholar
  54. Timpe, L.C., Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., & Jan, L.Y. (1988b). Expression of functional potassium channels from Shaker eDNA in Xenopus oocytes. Nature 331: 143–145.PubMedCrossRefGoogle Scholar
  55. Toro, L., Ottolia, M., Stefani, E., & Latorre, R. (1994). Structural determinants in the interaction of Shaker Inactivating peptide and a Ca activated K’ channel. Biochemistry 33: 7220–7228.PubMedCrossRefGoogle Scholar
  56. Toro, L., Stefani, E., & Latorre, R. (1992). Internal blockade of a Ca“-activated K’ channel by Shaker B inactivating ”ball“ peptide. Neuron 9: 237–245.PubMedCrossRefGoogle Scholar
  57. Tseng-Crank, J., Yao, J.-A., Berman, M.F., & Tseng, G.-N. (1993). Functional role of the NI-12-terminal cytoplasmic domain of a mammalian A-type K channel. J. Gen. Physiol. 102: 1057–1083.Google Scholar
  58. Wallner, M., Meera, P., Ottolia, M., Kaczorowski, G., Latorre, R., Garcia, M.L., Stefani, E., & Toro, L. (1995). Cloning, expression and modulation by a b-subunit of a human maxi Kc., channel cloned from human myometrium. Receptors and Channels 3: 185–199.PubMedGoogle Scholar
  59. Zagotta, W.N., Hoshi, T., & Aldrich, R.W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568–571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ramón Latorre
    • 1
    • 2
  • Enrico Stefani
    • 3
  • Ligia Toro
    • 3
  1. 1.Centro de Estudios Científicos de Santiago CasillaSantiago 9Chile
  2. 2.Department of Biology Faculty of SciencesUniversity of ChileSantiagoChile
  3. 3.Department of AnesthesiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations