Modulation of P-Glycoprotein on Tumour Cells

  • Monique Orind
  • Karen Wagner-Souza
  • Raquel C. Maia
  • Vivian M. Rumjanek

Abstract

A serious problem in cancer chemotherapy involves the generation of multidrug resistance (MDR). This phenomenon represents cross-resistance among a number of drugs, unrelated structurally or functionally, and is one of the major reasons for chemotherapy failure. MDR is associated to the overexpression of the mdr 1 gene which encodes a 170kDa plasma membrane glycoprotein known as P glycoprotein (Pgp) (Chen et al., 1986; Juliano and Ling, 1976; Riordan et al., 1985) and it has been demonstrated that overexpression of this protein is sufficient to confer cellular resistance (Ueda et al. 1987). Pgp functions as an ATP-dependent efflux pump capable of extruding antineoplastic agents to the outside of the cell reducing their intracellular levels. Structurally, Pgp is a transmembrane protein arranged in two homologous halves, each half containing an ATP binding site facing the cytoplasm, and with twelve hydrophobic regions forming the transmembrane loops (Gottesman and Pastan, 1993).

Keywords

Natural Killer Natural Killer Cell Multidrug Resistance K562 Cell Modulative Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, H.S.L., DeBoer, G., Thorner, P.S., Haddad, G., Gallie, B.L. and Ling, V. (1994). Multidrug resistance. Clinical opportunities in diagnosis and circumvention. Hematol. Oncol. Clinics North America 8: 383–410.Google Scholar
  2. Chaudhay, P.M. and Ronison, I.B. (1991). Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66: 85–94.CrossRefGoogle Scholar
  3. Chen, C.J., Chin, J.E., Ueda, K.. Clark, D.P., Pastan, 1., Gottesman, M.M. and Roninson, I.B. (1986). Internal duplication and homology with bacterial transport proteins in the mdr-/ ( P-glycoprotein) gene from multidrugresistant human cells. Cell 47: 381–389.PubMedCrossRefGoogle Scholar
  4. Chong, A.S.F., Markham, H.M., Gebel, S.D., Bines, S.D., and Coon, J.S. (1993). Diverse multidrug-resistancemodification agents inhibit cytolytic activity of natural killer cells. Cancer Immunol. Immunother. 36: 133–139.PubMedCrossRefGoogle Scholar
  5. de LaRocque, L., Campos, M.M., Olej, B., Castilho, F., Mediano, I.F. and Rumjanek, V.M. (1995). Inhibition of human LAK-cell activity by the anti-depressant trifluoperazine. Immunopharmacol. 29: 1–10, 1995.Google Scholar
  6. de Meis, L. (1991). Fast efflux of Ca2+ mediated by the sarcoplasmic reticulum Ca2+ ATPase. J. Biol. Chem. 266: 5736–5742.PubMedGoogle Scholar
  7. de Meis, L. and Suzano, V.A. (1994). Uncoupling of muscle and blood platalets Ca`’ Transport ATPase by heparin: regulation by K. J. Biol. Chem. 269: 14525–14529.PubMedGoogle Scholar
  8. de Meis, L., Wolosker, H. and Ergelender, S. (1996). Regulation of the Channel function of Ca2+ ATPase. Biochim. Biophys. Acta, in press.Google Scholar
  9. di Padova, F.E. (1989). Pharmacology of cyclosporine: V- Pharmacological effects on immune function: in vitro studies. Pharmacol. Rev. 41: 374–405.Google Scholar
  10. di Virgilio, F., Steinberg, T.H. and Silverstein, S.C. (1990). Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11: 57–62.PubMedCrossRefGoogle Scholar
  11. Drach, D., Zhao, S., Drach, J., Mahadevia, R., Gattringer, C., Huber, H. and Andreeff, M. (1992). Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 80: 2729–2735.PubMedGoogle Scholar
  12. Fine, R.L., Patel, J., Allegra, C.J., Curt, G.A., Cowan, K.H., Ozols, R.F., Lippman, M.E., McDevitt, R. and Chabner, B.A. (1985). Increased phosphorylation of a 20,000 MW protein in pleiotropic drug-resistant MCF human breast cancer lines. Proc. Am. Assoc. Cancer. Res. 26: 345.Google Scholar
  13. Ford, J.M. and Hait, W.N. (1990). Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42: 155–199.PubMedGoogle Scholar
  14. Gattas, C.R. and de Meis, L. (1978). The mechanism by which quinine inhibits the Ca2+ transport of sarcoplasmic reticulum. Biochem. Pharmacol. 27: 539–545.CrossRefGoogle Scholar
  15. Gottesman, M.M. and Pastan, Y. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62: 385–427.PubMedCrossRefGoogle Scholar
  16. Gutheil, J.C., Hart, S.R., Belani, C.P., Melera, P.W. and Hussain, A. (1994). Alterations in Ca’’ transport ATPase and P-glycoprotein expression can mediate resistance to thapsigargin. J. Biol. Chem. 269: 7976–7981.PubMedGoogle Scholar
  17. Hamada, H., Hagiwara, K.I., Nakajima, T. and Tsuruo, T. (1987). Phosphorylation of the Mr 170,000 to 180,000 glycoprotein specific to multidrug-resistant tumor cells: effect of verapamil, trifluoperazine, and phorbol esters. Cancer. Res. 47: 2860–2865.PubMedGoogle Scholar
  18. Herberman, R.B. and Ortaldo, J.R. (1981). Natural killer cells: their role in defenses against disease. Science 214, 24–30.PubMedCrossRefGoogle Scholar
  19. Hussain, A., Garnett. C., Klein, M.G., Tsai-Wu, J.J., Schneider, M.F. and Inesi, G. (1995). Direct involvement of intracellular Ca“ Transport ATPase in the development of thapsigargin resistance by chinese hamster lung fibroblasts. J. Biol. Chem. 270: 12140–12146.PubMedCrossRefGoogle Scholar
  20. Juliano, R.L. and Ling, V. (1976). A surface glycoprotein modulating drug permeability in chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455: 152–162.PubMedCrossRefGoogle Scholar
  21. Klimeki, W.T., Taylor, C.W. and Dalton, W.S. (1995). Inhibition of cell-mediated cytolysis and P-glycoprotein function in natural killer cells by verapamil isomers and cyclosporine A analogs. J. Clin. Immunol. 15: 152–158.CrossRefGoogle Scholar
  22. Kobayashi, Y., Yamashiro, T., Nagatake, H., Yamamoto, T., Watanabe, N., Tanaka, H., Shigenobu, K. and Tsuruo. T. (1994). Expression and function of multidrug resistance P-glycoprotein in a cultured natural killer cell-rich population revealed by MRK16 monoclonal antibody and AHC-52. Biochem. Pharmacol. 48: 1641–1646.PubMedCrossRefGoogle Scholar
  23. Maia, R.C., Silva, E.A.C., Harab, R.C., Lucena, M., Pires, V. and Rumjanek, V.M. (1996) Sensitivity of vincristinesensitive K562 and vincristine-resistant K562-Lucena I cells to anthracyclines and reversal of multidrug resistance. Brazilian J. Med. Biol. Res. 29: 467–472.Google Scholar
  24. Maia, R.C., Wagner-Souza, K., Harab, R.C. and Rumjanek, V.M. (1996). Heparin reverses Rhodamine 123 extrusion by multidrug resistant cells. Cancer Letters 105, in press.Google Scholar
  25. Neyfake, A.A. (1988). Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp. Cell Res. 174: 168–176.CrossRefGoogle Scholar
  26. Nooter, K. and Sonneveld, P. (1994). Clinical relevance of P-glycoprotein expression in haematological malignancies. Leukaemia Res. 18: 233–243.CrossRefGoogle Scholar
  27. Pastan, I. and Gottesman, M. (1991). Multidrug resistance. Annu. Rev. Med. 42: 277–286.PubMedCrossRefGoogle Scholar
  28. Putney, J.W. (1990) Capacitative calcium entry revisited. Cell Calcium 11: 611–624.PubMedCrossRefGoogle Scholar
  29. Riordan, J.R., Deuchars, K., Kartner, N., Alon, N., Trent, J. and Ling, V. (1985). Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316: 817–819.PubMedCrossRefGoogle Scholar
  30. Rumjanek, V.M., Lucena, M., Campos, M.M., Marques-Silva, V.M. and Maia, R.C. (1994). Multidrug resistance in leukemias: the problem and some approaches to its circumvention. Ciencia Cultura 46: 63–69.Google Scholar
  31. Sagara, Y., Fernandez-Belda, F., de Meis, L. and Inesi, G. (1992). Characterization of the inhibition of intracellular Cat’ transport ATPases by thapsigargin. J. Biol. Chem. 267: 12606–12613.PubMedGoogle Scholar
  32. Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R. and Dawson, A.P. (1990). Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ ATPase. Proc. Natl. Acad. Sci. USA 87: 2466–2470.PubMedCrossRefGoogle Scholar
  33. Thiebaut, F., Tsuruo. T., Hamada. H., Gottesman, M.M., Pastan, I. and Willingham, M.C. (1987). Cellular localization of the multidrug-resistance gene product in normal human tissues. Proc. Natl. Acad. Sci. USA 84: 7735–7738.PubMedCrossRefGoogle Scholar
  34. Tsuruo, T., lida, H., Ohkochi, E., Tsukagoshi, S. and Sakurai, Y. (1983). Establishment and properties of a vincristine-resistant human myelogenous leukemia K562. Jpn. J. Cancer Res. ( Gann ) 74: 751–758.Google Scholar
  35. Ueda, K., Cardarelli, C., Gottesman, M.M. and Pastan, Y. (1987). Expression of a full length cDNA for the human MDRI gene confers resistance to colchicine, doxorubicine and vimblastine. Proc. Natl. Acad. Sci. USA 84: 3004–3008.PubMedCrossRefGoogle Scholar
  36. Waldron, R.T., Short, A.D., Meadows, J.J., Gosh, T.K. and Gill, D.L. (1994). Endoplasmic reticulum calcium pump expression and control of cell growth. J. Biol. Chem. 269: 11927–11033.PubMedGoogle Scholar
  37. Willisch, A., Noller, A., Handgretinger, R., Weger, S., Nussler, V., Niethammer, D., Probst, H. and Gekeler, V. (1993). MDR 1/ P-glycoprotein expression in natural killer ( NK) cells enriched from peripheral or umbilical cord blood. Cancer Letters 69: 139–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Monique Orind
    • 1
  • Karen Wagner-Souza
    • 1
  • Raquel C. Maia
    • 2
  • Vivian M. Rumjanek
    • 1
  1. 1.Laboratório de Imunologia Tumoral Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Serviço de Hematologia e Centro de Pesquisa BásicaInstituto Nacional de CancerRio de JaneiroBrazil

Personalised recommendations