Advertisement

Dendritic Development of Visual Callosal Neurons

  • A. Vercelli
  • F. Assal
  • G. M. Innocenti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)

Abstract

Neurons in the cerebral cortex differ from each other in terms of size, dendritic morphology, location, pattern of projection, membrane and response properties. In principle, these features could derive from an interplay between developmental programs intrinsic to the neuron and various extrinsic factors acting upon them. Interestingly, certain features of cortical neurons, such as dendritic arbor and projection pattern, appear to be mutually dependent: in layer V of cerebral cortex of rats and kittens (Figure 1), pyramidal neurons with callosal or corticocortical axons have short apical dendrites, while neurons projecting to the spinal cord or tectum have longer apical dendrites, which reach layer I (Hallman et al., 1988; Hübener et al., 1990; Koester and O’Leary, 1992; Kasper et al., 1993 and 1994). This morphological specificity of the different classes of projection neurons is maintained even in organotypic co-cultures (Bolz et al., 1990, 1991).

Keywords

Visual Cortex Pyramidal Neuron Dendritic Arbor Dendritic Morphology Apical Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendoerfer K.L., Cabelli R.J., Escandon E., Kaplan D.R., Nikolics K. and Shatz C.I., Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J. Neurosci. 14: 1795–1811 (1994).PubMedGoogle Scholar
  2. Barbaresi P., Conti F., Fabri M. and Manzoni T., D-[`H]aspartate retrograde labeling of callosal and association neurons of somatosensory areas I and II of ca’s. J. Comp. Neurol. 263: 159–178 (1987).PubMedCrossRefGoogle Scholar
  3. Bliss Tieman S. and Hirsch H.V.B., Exposure to lines of only one orientation modifies dendritic morphology of cells in the visual cortex of the cat. J. Comp. Neurol. 211: 353–362 (1982).CrossRefGoogle Scholar
  4. Bolz J., Novak N., Götz M. and Bonhoefferr T., Formation of target-specific, neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346: 359–362 (1990).PubMedCrossRefGoogle Scholar
  5. Bolz J., Hübener M., Kehrer I. and Novak N., Structural organization and development of identified projection neurons in primary visual cortex. In: Bagnoli P., Hodos W. (eds) The Changing Visual Svstem: Maturation and Aging in the Central Nervous System. Nato ASI Series, Plenum Press pp 233–246 (1991).CrossRefGoogle Scholar
  6. Borges S. and Berry M., The Effects of Dark Rearing on the Development of the Visual Cortex of the Rat. J. Comp. Neurol. 180: 277–300 (1978).PubMedCrossRefGoogle Scholar
  7. Bühl E.H. and Singer W., The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Exp. Brain Res. 75: 470–476 (1989).PubMedCrossRefGoogle Scholar
  8. Cabelli R.J., Hohn A. and Shatz C., Inhibition of ocular dominance column formation by infusion of NT-4/5 of BDNF. Science 267: 1662–1666 (1995).PubMedCrossRefGoogle Scholar
  9. Castren E., Zafra F., Thoenen H. and Lindholm D., Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci. USA 89: 9444–9448 (1992).PubMedCrossRefGoogle Scholar
  10. Coleman P.D. and Riesen A.H., Environmental effects on cortical dendritic field. I. Rearing in the dark. J. Anat. 102: 363–374 (1968).PubMedGoogle Scholar
  11. Conti F., Fabri M. and Manzoni T., Glutamate-positive corticocortical neurons in the somatic sensory areas I and Il of cats. J. Neurosci. 8: 2948–2960 (1988).PubMedGoogle Scholar
  12. Davies C.A. and Katz H.B., The comparative effects of early-life undernutrition and subsequent differential environment on the dendritic branching of pyramidal cells in rat visual cortex. J. Comp. Neurol. 218: 345–350 (1983).PubMedCrossRefGoogle Scholar
  13. Diao Y-C. and So K.-F., Dendritic morphology of visual callosal neurons in the golden hamster Brain, Behavior & Evolution 37: 1–9 (1991).CrossRefGoogle Scholar
  14. Eayrs J.T., The cerebral cortex of normal and hypothyroid rats. Acta Anat. 25: 160–183 (1955).PubMedCrossRefGoogle Scholar
  15. Ferrer I., Soriano E., Marti E., Digon E., Reyners H. and Gianfelici de Reyners E., Development of dendritic spines in the cerebral cortex of the microencephalic rat following prenatal x-irradiation. Neurosci. Lett. 125: 183–186 (1991).PubMedCrossRefGoogle Scholar
  16. Fifkova E., The effect of unilateral deprivation on visual centers in rats. J. Comp. Neurol. 140: 431–438 (1970). Globus A. and Scheibel A., The effect of visual deprivation on cortical neurons: A Golgi study. Exp. Neurol. 19: 331–345 (1967).Google Scholar
  17. Hallman L.E., Schofield B.R. and Lin C.-S., Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. J. Comp. Neurol. 272: 149–160 (1988).PubMedCrossRefGoogle Scholar
  18. Harris R.M. and Woolsey T.A., Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage. J. Comp. Neurol. 196: 357–376 (1981).PubMedCrossRefGoogle Scholar
  19. Hendry S.H.C. and Bhandari M.A., Neuronal organization and plasticity in adult monkey visual cortex–Immunoreactivity for Microtubule-Associated Protein-2. Visual Neurosci. 9: 445–459 (1992).CrossRefGoogle Scholar
  20. Hornung J.P. and Garey L.J., A direct pathway from thalamus to visual callosal neurons in cat. Exp Brain Res 38: 121–123 (1980).PubMedCrossRefGoogle Scholar
  21. Hübener M.,. Schwarz C. and Bolz J., Morphological types of projection neurons in layer 5 of cat visual cortex. J. Comp. Neurol. 301: 655–674 (1990).Google Scholar
  22. Innocenti G.M., Growth and reshaping of axons in the establishment of visual callosal connections. Science 212: 824–827 (1981).PubMedCrossRefGoogle Scholar
  23. Innocenti G.M., The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch. Ital. Biol. 118: 124–188 (1980).PubMedGoogle Scholar
  24. Innocenti G.M., The development of projections from cerebral cortex. Prog. Sens. Physiol. 12: 65–114 (1991).CrossRefGoogle Scholar
  25. Innocenti G.M. and Fiore L., Morphological correlates of visual field transformation in the corpus callosum. Neurosci. Lett. 21: 245–252 (1976).CrossRefGoogle Scholar
  26. Innocenti G.M. and Caminiti R., Postnatal shaping of callosal connections from sensory areas. Exp. Brain Res. 38: 381–394 (1980).PubMedCrossRefGoogle Scholar
  27. Innocenti G.M. and Clarke S., Multiple sets of visual cortical neurons projecting transitorily through the corpus callosum. Neurosci. Lett. 41: 27–32 (1983).PubMedCrossRefGoogle Scholar
  28. Innocenti G.M. and Clarke S., The organization of immature callosal connections. J. Comp. Neurol. 230: 287–309 (1984).PubMedCrossRefGoogle Scholar
  29. Innocenti G.M., Clarke S. and Kraftsik R., Interchange of callosal and association projections in the developing visual cortex. J. Neurosci. 6: 1384–1409 (1986).Google Scholar
  30. Innocenti G.M., Fiore L. and Caminiti R., Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci. Lett. 4: 237–242 (1977).PubMedCrossRefGoogle Scholar
  31. Innocenti G.M., Manzoni T. and Spidalieri G., Patterns of the somesthetic messages transferred through the corpus callosum. Exp. Brain Res. 19: 447–466 (1974).PubMedCrossRefGoogle Scholar
  32. Juraska J.M., The development of pyramidal neurons after eye opening in the visual cortex of hooded rats: a quantitative study. J. Comp. Neurol. 212: 208–213 (1982).PubMedCrossRefGoogle Scholar
  33. Kasper E.M., Larkman A.U., Lübke J. and Blakemore C., Pyramidal neurons in layer V of the rat visual cortex. I. Correlation between cell morphology, intrinsic electrophysiological properties and axon targets. J. Comp. Neurol. 339: 459–474 (1993).Google Scholar
  34. Kasper E.M., Lübke J., Larkman A.U. and Blakemore C., Pyramidal neurons in layer V of the rat visual cortex. Ill. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J. Comp. Neurol. 339: 495–518 (1994).Google Scholar
  35. Katz L.C., Burkhalter A. and Dreyer W.J., Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310: 498–500 (1984).PubMedCrossRefGoogle Scholar
  36. Katz L.C. and Shatz C.J., Synaptic activity and the construction of cortical circuits. Science 274: 1133–1138 (1996).PubMedCrossRefGoogle Scholar
  37. Koester S.E. and O’Leary D.D.M., Functional classes of cortical projection neurons develop dendritic distinct ions by class-specific sculpting of an early common pattern. J. Neurosci. 12: 1382–1393 (1992).Google Scholar
  38. Martin K.A.C. and Whitteridge D. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J. Physiol. (London) 353: 463–504 (1984).Google Scholar
  39. McAllister A.K., Lo D.C. and Katz L.C., Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15: 791–803 (1995).PubMedCrossRefGoogle Scholar
  40. Olavarria J. and Van Sluyters R.C. Organization and postnatal development of callosal connections in the visual cortex of the rat J. Comp. Neurol. 239: 1–26 1985PubMedCrossRefGoogle Scholar
  41. O’Leary D.D., Stanfield B.B. and Cowan W.M., Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axon collaterals rather than. Dev. Brain Res. 1: 607–617 (1981).CrossRefGoogle Scholar
  42. Peinado A. and Katz L., Development of cortical spiny stellate cells: retraction of a transient apical dendrite. Soc. Neurosci. Abst. 16: 1127 (1990).Google Scholar
  43. Peters A., Payne B.R. and Josephson K., Transcallosal non-pyramidal cell projections from visual cortex in the cat. J. Comp. Neurol. 302: 124–142 (1990). -Google Scholar
  44. Riederer B.M., Guadano-Ferraz A. and Innocenti G.M., Differences in distribution of microtubule-associated protein 5a and 51) during cat cerebral cortex and corpus callosum development: Dependence on phosphorylation. Devl. Brain Res. 56: 235–243 (1990).CrossRefGoogle Scholar
  45. Riederer B.M. and Innocenti G.M., Differential distribution of tau proteins in developing cat cerebral cortex and corpus callosum. Eur. J. Neurosci. 3: 1134–1145 (1991).PubMedCrossRefGoogle Scholar
  46. Riederer B.M., Development of the axonal and dendritic cytoskeleton. Adv. Mol. Cell Biol. 12: 107–142 (1995).CrossRefGoogle Scholar
  47. Rosenquist A.C., Connections of visual cortical areas in the cat. In: Peters A, Jones EG (eds). Cerebral Cortex. Vol 3, Plenum Publishing Corporation pp 81–117 (1985).Google Scholar
  48. Salas M., Diaz S. and Nieto A., Effects of neonatal food deprivation on cortical spines and dendritic development of the rat. Brain Res. 73: 139–144 (1974).PubMedCrossRefGoogle Scholar
  49. Segraves M.A. and Innocenti G.M., Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers. J. Neurosci. 5: 2107–2118 (1985).PubMedGoogle Scholar
  50. Seymoure P. and Juraska J.M., Sex differences in cortical thickness and the dendritic tree in the monocular and binocular subfields of the rat visual cortex at weaning age. Dev. Brain Res. 69: 185–189 (1992).CrossRefGoogle Scholar
  51. Steffen H. and Van der Loos H., Early lesions of mouse vibrissal follicles: their influence on dendrite orientation in the cortical barrelfield. Exp. Brain Res. 40: 419–431 (1980).PubMedCrossRefGoogle Scholar
  52. Valverde F., Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 5: 274–292 (1968).PubMedCrossRefGoogle Scholar
  53. Van der Loos H., The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on problems of neuronal growth and cell orientation. Bull. Johns Hopkins Hosp. 117: 228–250 (1965).Google Scholar
  54. Vaughan D.W., Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J. Comp. Neurol. 171: 501–516 (1977).PubMedCrossRefGoogle Scholar
  55. Vercelli A., Assal F. and Innocenti G.M., Emergence of callosally-projecting neurons with stellate morphology in the visual cortex of the kitten. Exp. Brain Res. 90: 346–358 (1992).PubMedCrossRefGoogle Scholar
  56. Vercelli A. and Innocenti G.M., Morphology of visual callosal neurons with different locations, contralateral targets or patterns of development. Exp. Brain Res. 94: 393–404 (1993).PubMedCrossRefGoogle Scholar
  57. Voigt T., LeVay S., Stamnes M.A., Morphological and immunocytochemical observations on the visual callosal projections in the cat. J. Comp. Neurol. 272: 450–460 (1988).PubMedCrossRefGoogle Scholar
  58. Weisskopf M. and Innocenti G.M., Neurons with callosal projections in visual areas of newborn kittens: an analysis of their dendritic phenotype with respect to the fate of the callosal axon and of its target. Exp. Brain Res. 86: 151–158 (1991).PubMedCrossRefGoogle Scholar
  59. Winfield D.A., The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid closure. Brain Res. 206: 166–171 (1981).PubMedCrossRefGoogle Scholar
  60. Wong R.OI., Herrmann K. and Shatz C.J., Remodeling of retinal ganglion cell dendrites in the absence of action potential activity. J. Neurobiol 22: 685–697 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. Vercelli
    • 1
  • F. Assal
    • 2
  • G. M. Innocenti
    • 3
  1. 1.Department of Anatomy, Pharmacology and Forensic MedicineUniversity of Torino, IItaly
  2. 2.Clinique de NeurologieHôpital Cantonal Universitaire de GenèveSwitzerland
  3. 3.Departement de Biologie cellulaire et de morphologieUniversité de LausanneSwitzerland

Personalised recommendations