Bounding Approaches to System Identification pp 119-138 | Cite as
Volume-Optimal Inner and Outer Ellipsoids
Chapter
Abstract
Approximating a complex set K by a simple geometrical form (such as a polytope, an orthotope, a sphere or an ellipsoid) is often of practical interest. Consider for instance the situation where a vector u has to be chosen so as to satisfy the property
where x and p(.,.) are vector-valued and where T and S are given sets. This can be of interest for instance in robust control, where the controller characterized by u must be designed in order to guarantee some given performances—at least stability—corresponding to a target set T for the process under study, given the information that the model parameters x lie in some specified feasible domain S. The information about S can be derived using the parameter bounding methodology, where one assumes that observations with bounded errors are performed on the process.(1)
$$
p\left( {u,x} \right) \in T,\forall x \in S,
$$
(8.1)
Keywords
Support Point Active Constraint Optimal Distribution Supporting Hyperplane Ellipsoidal Approximation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.E. Walter, editor. Mathematics and Computers in Simulation 32(5,6) (1990).Google Scholar
- 2.L. Pronzato and E. Walter, Int. J. Adapt. Control Sig. Proc. 8, 15 (1994).MathSciNetMATHCrossRefGoogle Scholar
- 3.B. Wahlberg and L. Ljung, IEEE Trans. Autom. Control AC-37, 900 (1992).MathSciNetCrossRefGoogle Scholar
- 4.B. W. Silverman and D. M. Titterington, SIAM J. Sci. Stat. Comput. 1, 401 (1980).MathSciNetMATHCrossRefGoogle Scholar
- 5.D. M. Titterington, J. Royal Stat. Soc. C27(3), 227 (1978).MathSciNetGoogle Scholar
- 6.L. Davies, An. Stat. 20, 1828 (1992).MATHCrossRefGoogle Scholar
- 7.R. D. Cook, D. M. Hawkins, and S. Weisberg, Stat. Prob. Lett. 16, 213 (1993).MathSciNetCrossRefGoogle Scholar
- 8.E. M. T. Hendrix, C. J. Mecking, and T. H. B. Hendriks, A Mathematical Formulation of Finding Robust Solutions for a Product Design Problem, Technical Report 93-02, Wageningen Agricultural University, Department of Mathematics, 6703HA Wageningen, The Netherlands (1993).Google Scholar
- 9.S. P. Tarasov, L.G. Khachiyan, and I.I. Erlich, Sov. Math. Dokl. 37, 226 (1988).MATHGoogle Scholar
- 10.L. G. Khachiyan and M. J. Todd, On the Complexity of Approximating the Maximal Inscribed Ellipsoid for a Polytope, Technical Report 893, School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca, New York (1990).Google Scholar
- 11.J. P. Norton, Int. J. Control 50, 2423 (1989).MathSciNetMATHCrossRefGoogle Scholar
- 12.M. Berger, Géométrie, CEDIC/Nathan, Paris (1979).Google Scholar
- 13.V. L. Klee, editor. L. Danzer, B. Grünbaum, and V. Klee, in: Proceedings of Symposia in Pure Mathematics, Convexity, Ann. Math. Soc, Providence, Rhode Island (1963). vol. VII, pp. 101-180.Google Scholar
- 14.R. Sibson, J. Roy. Stat. Soc. B34, 181 (1972).Google Scholar
- 15.D. M. Titterington, Biometrika 62, 313 (1975).MathSciNetMATHGoogle Scholar
- 16.E. Welzl, in: Lecture Notes in Computer Science Vol. 555, Springer-Verlag, Berlin, pp. 359–370 (1991).Google Scholar
- 17.K. Kiefer and J. Wolfowitz, Can. J. Math. 12, 363 (1960).MathSciNetMATHCrossRefGoogle Scholar
- 18.S. D. Silvey, Optimal Design, Chapman & Hall, London (1980).MATHCrossRefGoogle Scholar
- 19.V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York (1972).Google Scholar
- 20.C. L. Atwood, An. Stat. 4, 1124 (1976).MathSciNetMATHCrossRefGoogle Scholar
- 21.C. F. Wu, An. Stat. 6, 1286 (1978).MATHCrossRefGoogle Scholar
- 22.L. Pronzato and E. Walter, Automatica 30, 1731 (1994).MathSciNetMATHCrossRefGoogle Scholar
- 23.D. J. Elzinga and D. W. Hearn, Manag. Sci. 19, 96 (1972).MathSciNetMATHCrossRefGoogle Scholar
- 24.N. D. Botkin and V. L. Turova-Botkina, An Algorithm for Finding the Chebyshev Center of a Convex Polyhedron, Technical Report 395, Institüt für Angewandte Mathematik und Statistik, Universität Würzburg, W-8700 Würzburg (1992).Google Scholar
- 25.M. Grötschel, L. Lovâsz, and A. Schrijver, Geometrie Algorithms and Combinatorial Optimization, Springer, Berlin (1980).Google Scholar
- 26.R. G. Bland, D. Goldfarb, and M. J. Todd, Op. Res. 29, 1039 (1981).MathSciNetMATHCrossRefGoogle Scholar
- 27.L. Pronzato, E. Walter, and H. Piet-Lahanier, in: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, pp. 1952-1955 (1989).Google Scholar
- 28.E. Polak, Computational Methods in Optimization: a Unified Approach, Academic Press, New York (1971).Google Scholar
- 29.N. Z. Shor and O. A. Berezovski, Optim. Method. Software 1, 283 (1992).CrossRefGoogle Scholar
- 30.A. Vicino and M. Milanese, IEEE Trans. Autom. Control 36, 759 (1991).MathSciNetCrossRefGoogle Scholar
- 31.E. Fogel and Y. F. Huang, Automatica 18, 229 (1982).MathSciNetMATHCrossRefGoogle Scholar
- 32.G. Belforte and B. Bona, in: Prep. 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, York, pp. 1507-1512 (1985).Google Scholar
- 33.G. Belforte, B. Bona, and V. Cerone, Automatica 26, 887 (1990).MATHCrossRefGoogle Scholar
- 34.J. B. Lasserre, J. Optim. Theory App. 39, 363 (1983).MathSciNetMATHCrossRefGoogle Scholar
- 35.R. Horst and H. Tuy, Global Optimization, Springer, Berlin, Germany (1990).MATHGoogle Scholar
- 36.H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Ellis Horwood Limited, Chichester (1988).MATHGoogle Scholar
- 37.L. Devroye, Inf. Proc. Lett. 11, 53 (1980).MathSciNetMATHCrossRefGoogle Scholar
- 38.Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia (1994).MATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1996