Improved Image Compression Using Bounded-Error Parameter Estimation Concepts

  • A. K. Rao

Abstract

Classical approaches to parameter estimation yield point estimates of parameters by optimizing some criterion of fit. In contrast, bounded error parameter estimation (BEPE) methods provide sets of parameters which are consistent with the model structure, observation record, and uncertainty constraints. In general, no knowledge of the statistics of the model or observation uncertainty is assumed. The uncertainty, however, is assumed to be constrained in some manner, e.g., with bounded energy or bounded magnitude.(1) BEPE methods seem more appropriate than classical techniques in several situations. If the actual system is only loosely modeled by the chosen model, it appears more reasonable to attempt to optimize the model so as to bound the model mismatch error, rather than to do classical parameter estimation with erroneous assumptions on the statistics of the model mismatch error. In other cases, the statistics of the observation uncertainty may not be known and BEPE techniques may be effective.

Keywords

Discrete Cosine Transform Image Compression Discrete Cosine Transform Coefficient Inverse Discrete Cosine Transform Joint Photographic Expert Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Walter and H. Piet-Lahanier, in: Vol. 1 of Proceedings of the 1993 IEEE International Symposium on Circuits and Systems, pp. 774-777, Chicago, IL (1993).Google Scholar
  2. 2.
    J. R. Deller, IEEE Signal Process. Mag. 6, 4 (1989).Google Scholar
  3. 3.
    P. L. Combettes and H. J. Trussel, IEEE Trans. Acoust., Speech, Signal Process. 37, 393 (1989).CrossRefGoogle Scholar
  4. 4.
    A. Abo-Taleb and M. M. Fahmy, IEEE Trans. Circuits Syst. 31, 801 (1984).CrossRefGoogle Scholar
  5. 5.
    A. K. Rao, Membership-Set Parameter Estimation via Optimal Bounding Ellipsoids, Ph.D. Dissertation, University of Notre Dame, South Bend, IN (1990).Google Scholar
  6. 6.
    A. K. Rao and Y. F. Huang, IEEE Trans. Signal Process. 41, 1140 (1993).MATHCrossRefGoogle Scholar
  7. 7.
    N. Ahmed, T. Natrajan, and K. R. Rao, Discrete Cosine Transform, IEEE Trans. Comput. C-23, 90 (1974).CrossRefGoogle Scholar
  8. 8.
    S. Dasgupta and Y. F. Huang, IEEE Trans. Inf. Theory 33, 383 (1987).MATHCrossRefGoogle Scholar
  9. 9.
    E. Fogel and Y. F. Huang, Automatica 18, 229 (1982).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    A. K. Rao, Y. F. Huang, and S. Dasgupta, IEEE Trans. Acoust., Speech, Signal Process. 38, 447 (1990).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    N. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall, Englewood Cliffs, NJ (1984).Google Scholar
  12. 12.
    G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Control, Prentice Hall, Englewood Cliffs, NJ (1984).MATHGoogle Scholar
  13. 13.
    M. Milanese and G. Belforte, IEEE Trans. Autom. Control 27, 408 (April 1982).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    A. Vicino and M. Milanese, IEEE Trans. Autom. Control 36, 759 (1991).MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Pearson, SIAM J. Algebraic Discrete Methods (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • A. K. Rao
    • 1
  1. 1.COMSAT LabsClarksburgUSA

Personalised recommendations