Construction and Expression of the Genes for Neurotoxins and Non-Toxic Components in C. Botulinum Types C and E

  • Nobuhiro Fujii
  • Kouichi Kimura
  • Kayo Tsuzuki
  • Noriko Yokosawa
  • Keiji Oguma

Abstract

Botulinum toxins are classified into seven groups (type A to G) based on their antigenicity. Type C 1 (or C) toxin exists in large molecular sizes of 12S (300 kDa) and 16S (500 kDa) in culture supernatants or in an acid condition, and type E toxin exists in 12S size (Fig. 1). These large (progenitor) toxins are formed by association of the 7S neurotoxin (150 kDa) with a nontoxic component(s). In an alkaline condition, the 12S and 16S toxins dissociate into neurotoxin and nontoxic components. The neurotoxin is produced as a single polypeptide chain and is separated into two fragments, designated as the heavy (H) chain (100 kDa) and the light (L) chain (50 kDa), by reduction of a disulfide bond. On the contrary, the molecular constitution of nontoxic components is not clear. The nontoxic component of the 16S toxin shows hemagglutinating activity, but that of 12S toxin does not. It has been postulated) that the nontoxic component of 16S toxin is made up by conjugation of the nontoxic component of 12S toxin (designated as nontoxic-nonHA) with hemagglutinin (HA), and that this conjugation is not separated in an alkaline condition. Molecular mass (Mr) of nontoxic-nonHA component is approximately 120 – 140 kDa in any progenitor toxins, but that of HA is not clear because the preparation of HA alone has not yet been isolated. Suzuki et al. 2 reported that Mr. of the nontoxic component of type C 16S toxin was 240 kDa and that it was dissociated into five components (27, 35, 55, 115, and 120 kDa), indicating that HA consisted of several subcomponents. Ohishi et al. 3 clarified that the nontoxic components were necessary to maintain the oral toxicity or to cause food poisoning because they prevented the neurotoxin from degradation by gastric juice at a low pH.

Keywords

Botulinum Type Neurotoxin Gene Nontoxic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Sakaguchi, S. Kozaki, and I. Ohishi, Structure and function of botulinum toxins., In: “Bacterial Protein Toxins, ”J.E. Alouf, F.J. Fehrenbach, J.H. Freer, and J. Jeliaszewicz, eds., Academic press, London(1984)Google Scholar
  2. 2.
    N. Suzuki, B. Syuto, and S. Kubo, Purification and characterization of hemagglutinin of Clostridium botulinum type C strain Stockholm., Jpn.J.Vet.Res. 34: 269–278 (1986)PubMedGoogle Scholar
  3. 3.
    I. Ohishi, S. Sugii, and G. Sakaguchi, Oral toxicities of Clostridium botulinum toxins in response to molecular size., Infect.Immun. 16: 107–109 (1977)Google Scholar
  4. 4.
    K. Oguma, H. Iida, M. Shiozaki, and K. Inoue, Antigenicity of converting phages obtained from Clostridium botulinum type Ci and D., Infect.Immun. 13: 855–860 (1976)Google Scholar
  5. 5.
    K. Oguma, H. Iida, and M. Shiozaki, Phage conversion to hemagglutinin production in Clostridium botulinum types C and D., Infect.Immun. 14: 597–602 (1976)Google Scholar
  6. 6.
    B. Syuto, and S. Kubo, Isolation and molecular size of Clostridium botulinum type C toxin., Appl.Environ.Microbiol. 33: 400–405 (1977)Google Scholar
  7. 7.
    K. Tsuzuki, K. Kimura, N. Fujii, N. Yokosawa, T. Indoh, T. Murakami, and K. Oguma, Cloning and complete nucleotide sequence of the gene for the main component of hemagglutinin produced by Clostridiut botulinum type C., Infect.Immun. 58: 3173–3177 (1990)Google Scholar
  8. 8.
    K. Tsuzuki, K. Kimura, N. Fujii, N. Yokosawa, and K. Oguma, The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin., Biochem.Biophys. Res. Commun. 183: 1273–1279 (1992)Google Scholar
  9. 9.
    N. Yokosawa, K. Tsuzuki, B. Syuto, and K. Oguma, Activation of Clostridium botulinum type E toxin purified by two different procedures., J.Gen.Microbiol. 132: 1981–1988 (1986)Google Scholar
  10. 10.
    K. Oguma, B. Syuto, H. Iida, and S. Kubo, Antigenic similarity of toxins produced by Clostridium botulinum types C and D strains., Infect.Immun. 30: 656–660 (1980)Google Scholar
  11. 11.
    K. Tsuzuki, N. Yokosawa, B. Syuto, I. Ohishi, N. Fujii, K. Kimura, and K. Oguma, Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum type B, Ci, D, and E toxins and tetanus toxin., Infect. Immun. 56: 898–902 (1988)Google Scholar
  12. 12.
    K. Oguma, S. Murayama, B. Syuto, H. Iida, and S. Kubo, Analysis of antigenicity of Clostridium botulinum type Ci and D toxins by polyclonal and monoclonal antibodies., Infect. Immun. 43: 584–588 (1984)Google Scholar
  13. 13.
    V. Sathyamoorthy, and B.R. DasGupta, Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E., J.Biol.Chem. 260: 10461–10466 (1985)Google Scholar
  14. 14.
    N. Fujii, K. Oguma, N. Yokosawa, K. Kimura, and K. Tsuzuki, Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D., Appl.Environ.Microbiol. 54: 69–73 (1988)Google Scholar
  15. 15.
    K. Kimura, N. Fujii, K. Tsuzuki, T. Murakami, T. Indoh, N. Yokosawa, K. Takeshi, B. Syuto, and K. Oguma, The complete nucleotide sequence of the gene coding for botulinum type Ci toxin in the c-st phage genome., Biochem.Biophys. Res. Commun. 171: 1304–1311 (1990)Google Scholar
  16. 16.
    K. Kimura, N. Fujii, K. Tsuzuki, T. Murakami, T. Indoh, N. Yokosawa, and K. Oguma, Cloning of the structural gene for Clostridium botulinum type Ci toxin and whole nucleotide sequence of its light chain component., Appl. Environ. Microbiol. 57: 1168–1172 (1991)Google Scholar
  17. 17.
    N. Fujii, K. Kimura, T. Murakami, T. Indoh, T. Yashiki, K. Tsuzuki, N. Yokosawa, and K. Oguma, The nucleotide and deduced amino acid sequences of EcoRI fragment containing the S-terminal region of Clostridium botulinum type E toxin gene cloned from Mashike, Iwanai and Otaru strains., Microbiol.Immunol. 34: 1041–1047 (1990)Google Scholar
  18. 18.
    N. Fujii, K. Kimura, T. Yashiki, K. Tsuzuki, K. Moriishi, N. Yokosawa, B. Syuto, and K. Oguma, Cloning and whole nucleotide sequence of the gene for the light chain component of botulinum type E toxin from Clostridium butyri.cum strain BL6340 and Clostridium botulinum type E strain Mashike., Microbiol.Immunol. 36: 213–220 (1992)Google Scholar
  19. 19.
    N. Yokosawa, Y. Kurokawa, K. Tsuzuki, B. Syuto, N. Fujii, K. Kimura, and K. Oguma, Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines., Infect.Immun. 57: 272–277 (1989)Google Scholar
  20. 20.
    N. Yokosawa, K. Tsuzuki, B. Syuto, N. Fujii, K. Kimura, and K. Oguma, Binding of botulinum type CI, D and E neurotoxins to neuronal cell lines and synaptosomes., Toxicon. 29: 261–264 (1991)Google Scholar
  21. 21.
    S. Kozaki, Interaction of botulinum type A, B and E derivative toxins with synaptosomes of rat brain., Naunyn-Schmiedergs Arch.Pharmacol. 308: 67–70 (1979)Google Scholar
  22. 22.
    T. Binz, H. Kurazono, M. Wille, J. Frevert, K. Wernars, and H. Niemann, The complete sequence of botulinum neurotoxin type A and comparison with other Clostridial neurotoxins., J.Biol.Chem. 265: 9153–9158 (1990)Google Scholar
  23. 23.
    D.E. Thompson, J.K. Brehm, J.D. Oultram, T.J. Swinfield, C.C. Shone, T. Atkinson, J. Melling, and N.P. Minton, The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene., Eur.J.Biochem. 189: 73–81 (1990)Google Scholar
  24. 24.
    T. Binz, H. Kurazono, M.R. Popoff, M.W. Eklund, G. Sakaguchi, S. Kozaki, K. Krieglstein, A. Henschen, D.M. Gill, and H. Niemann, Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D., Nucleic Acids Res. 18: 5556 (1990)Google Scholar
  25. 25.
    S.M. Whelan, M.J. Elmore, N.J. Bodsworth, T. Atkinson, and N.P. Minton, The complete amino acid sequence of the Clostridium botulinum type-E neurotoxin, derived by nucleotide-sequence analysis of the encoding gene., Eur.J.Biochem. 204: 657–667 (1992)Google Scholar
  26. 26.
    S. Poulet, D. Hauser, M. Quanz, H. Niemann, and M.R. Popoff, Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain Beluga) and Clostridium butyricum (strains ATCC43181 and ATCC 43755)., Biochem.Biophys.Res.Commun. 183: 107–113 (1992)Google Scholar
  27. 27.
    U. Eisel, W. Jarausch, K. Goretzki, A. Henschen, J. Engels, U. Weller, M. Hudel, E. Habermann, and H. Niemann, Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins., Embo J. 5: 2495–2502 (1986)Google Scholar
  28. 28.
    N.F. Fairweather, and V.A. Lyness, The complete nucleotide sequence of tetanus toxin., Nucleic Acids Res. 14: 7809–7812 (1986)Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Nobuhiro Fujii
    • 1
  • Kouichi Kimura
    • 1
  • Kayo Tsuzuki
    • 1
  • Noriko Yokosawa
    • 1
  • Keiji Oguma
    • 1
  1. 1.Department of MicrobiologySapporo Medical CollgeSapporo 060Japan

Personalised recommendations