Action of Botulinum Toxin on Artificial Models for Acetylcholine Transport

  • C. Solsona
  • E. López-Alonso
  • J. Blasi
  • J. Canaves
  • J. Canals
  • M. Arribas
  • L. Ruiz-Avila
  • J. M. González-Ros
  • J. Marsal

Summary

Two artificial models for acetylcholine secretion have been used in order to study if they are sensitive to the action of Botulinum toxin type A. We have used the electric organ of Torpedo as the source to obtain subcellular components of the cholinergie nerve terminals. Giant proteoliposomes which have incorporated presynaptic plasma membrane proteins are able to translocate acetylcholine in a calcium dependent manner, in the presence of A23187 calcium ionophore. This transport is sensitive to BoNT/A. In addition the fluidity of such artificial membrane is also sensitive to BoNT/A, suggesting that BoNT/A may inhibit ACh release by making synaptic membranes more rigid. The second model utilized is Xenopus oocytes injected with cholinergie synaptic vesicles and presynaptic plasma membrane. These injected cells are able to release ACh under potassium depolarization or by A23187 ionophore. BoNT/A is capable to inhibit such depolarization-induced release.

Keywords

Botulinum Toxin Synaptic Vesicle Xenopus Oocyte Electric Organ Botulinum Toxin Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavalli, A., Eder-Colli, L., Dunant, Y., Loctin, F., and Morel, N., 1991, Release of acetylcholine by Xenopus oocytes injected with mRNAs from Cholinergic neurons, EMBO J. 10: 1671.Google Scholar
  2. DasGupta, B.R., and Sathyamoorthy, V., 1984, Purification and aminoacid composition of Type A botulinum neurotoxin, Toxicon.22:415.Google Scholar
  3. Diebler, M.F., and Lazereg, S., 1985, Mg-ATPase and cholinergic synaptic vesicles, J. Neurochem. 44: 1633.PubMedCrossRefGoogle Scholar
  4. Dolezal, V., Vyskocil, F., and Tucek, S., 1983, Decrease of the spontaneous non-quantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm, Pflügers Arch. 397: 319.PubMedCrossRefGoogle Scholar
  5. Dolly, J.O., 1991, Peptide toxins that alter neurotransmitter release, in: “Handbook of Experimental Pharmacology,” H. Herken and F. Hucho, eds., Springer-Verlag, Berlin.Google Scholar
  6. Dunant, Y., Esquerda, J.E., Loctin, F., Marsal, J., and Muller, D., 1987, Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ, J. Physiol. 385: 677.PubMedGoogle Scholar
  7. Egea, G., Marsal, J., Solsona, C., Rabasseda, X., and Blasi, J., 1989, Increase in reactive cholesterol in the presynaptic membrane of depolarized Torpedo synaptosomes: blockade by botulinum toxin type A, Neurosci. 31: 521.CrossRefGoogle Scholar
  8. Guitart, X., Egea, G., Solsona, C., and Marsal, J., 1987, Botulinum neurotoxin inhibits depolarization-stimulated protein phosphorylation in pure cholinergic synaptosomes, FEBS Lett. 219: 219.PubMedCrossRefGoogle Scholar
  9. Hachisuka, H., Nomura, H., Mori, S., Nakano, S., Okubo, K., Kusuhara, M., Karashima, M., Tanikawa, E., Higuchi, M., and Sasai, Y., 1990, Alterations in membrane fluidity during keratinocyte differentiation measured by fluorescence polarization, Cell and Tiss Res. 260: 207.CrossRefGoogle Scholar
  10. Henkel, A., and Zimmermann, H., 1992, “In vitro” binding of isolated synaptic vesicles to presynaptic plasma membranes: activation by Ca“ and protein kinase C, Neurochem. Int. 20:55.Google Scholar
  11. Israel, M., Manaranche, R., Marsal, J., Meunier, F., Morel, N., Frachon, P., and Lesbats, B., 1980, ATP dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ, J. Membr. Biol. 54: 115.PubMedCrossRefGoogle Scholar
  12. Israel, M., and Lesbats, B., 1981, Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes, J. Neurochem. 37: 1475.PubMedCrossRefGoogle Scholar
  13. Israel, M., Lesbats, B., Morel, N., Manaranche, R., Gulik-Krzywiki, T., and Dedieu, J.V., 1984, Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation, Proc. Natl. Acad. Sci. USA 81: 277.PubMedCrossRefGoogle Scholar
  14. Lomneth, R., Martin, T.F.J., and Dasgupta, B.R., 1991, Botulinum neurotoxin light chain Inhibits Norepinephrine secretion in PC12 Cells at intracellular membranous or cytoskeletal site, J. Neurochem. 57: 1413.PubMedCrossRefGoogle Scholar
  15. Marsal, J., Solsona, C., Rabasseda, X., Blasi, J., and Casanova, A., 1987, Depolarization-induced release of ATP from cholinergic synaptosomes is not blocked by botulinum toxin type A, Neurochem. Int. 10: 295.PubMedCrossRefGoogle Scholar
  16. Marsal, J., Egea, G., Solsona, C., Rabasseda, X., and Blasi, J., 1989, Botulinum toxin type A block the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes, Proc. Natl. Acad. Sci. USA 86: 372.PubMedCrossRefGoogle Scholar
  17. Morel N., Marsal J., Manaranche R., Lazereg S., Mazie J.C., and Israël M. (1985). Large-scale purification of presynaptic plasma membranes from Torpedo electric organ. J.Cell Biol., 101, 1757–1762.PubMedCrossRefGoogle Scholar
  18. Riquelme, G., Lopez, E., García-Segura, L.M., Ferragut, J.A., and Gonzalez-Ros, J.M., 1990, Giant liposomes: A model system in which to obtain Patch-clamp recordings of ionic channels, Biochemistry 29: 1 1215.Google Scholar
  19. Sathyamoorthy, V., and DasGupta, B.R., 1985, Separation, purification, and partial characterization and comparison of the heavy and light chains of Botulinum neurotoxin types A,B and E, J. Biol. Chem. 260: 10461.PubMedGoogle Scholar
  20. Silinsky, E.M., 1985, The biophysical pharmacology of calcium-dependent acetylcholine secretion, Pharmacol Rev. 37: 81.PubMedGoogle Scholar
  21. Simpson, L.L., 1986 Molecular pharmacology of botulinum and tetanus toxin, Ann. Rev. Pharmacol. Toxicol. 26: 546.Google Scholar
  22. Scheuner, D., Logsdon, C.D., and Holz, R.W., 1992, Bovine chromaffin granule membranes undergo Ca’-regulated exocytosis in frog oocytes, J. Cell. Biol. 116: 359.PubMedCrossRefGoogle Scholar
  23. Woody, M.A., and DasGupta, B.R., 1988, Fast protein liquid chromatography of botulinum neurotoxin types A, B and E, J. Chromatography. 430: 279.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • C. Solsona
    • 1
  • E. López-Alonso
    • 2
  • J. Blasi
    • 1
  • J. Canaves
    • 2
  • J. Canals
    • 1
  • M. Arribas
    • 1
  • L. Ruiz-Avila
    • 1
  • J. M. González-Ros
    • 2
  • J. Marsal
    • 1
  1. 1.Laboratori de Neurobiologia Cel.lular i Molecular. Facultat de Medicina, Hospital de BellvitgeUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departamento de Neuroquímica, Facultad de MedicinaUniversidad de AlicanteAlicanteSpain

Personalised recommendations