Molecular Basis of Human Blood Group Antigens pp 281-297 | Cite as
Lutheran Antigens, Lutheran Regulatory Genes, and Lutheran Regulatory Gene Targets
Abstract
The Lutheran blood group is a family of red cell polymorphisms comprising at least two major alleles, Lu a and Lu b. Lutheran antigens are for the most part clinically insignificant, although some Lutheran antibodies cause mild clinical problems. Nevertheless, the Lutheran blood group antigens have played an important role in the study of human genetics, and further research of Lutheran regulatory genes promises to be equally informative. The genetic importance of the Lutheran system first came to light when Jan Mohr (1951, 1954) demonstrated that the Lutheran locus (Lu) and the Secretor locus (Se) provided the first known example of autosomal crossing-over and then suggested a further linkage between the myotonic dystrophy gene (DM) and the Lu and Se loci. Furthermore, it was the Lu-Se linkage that gave the first evidence that the frequency of crossing-over was sex-related (Cook, 1965). The linkage between the Lu and Dm genes was later proven (Renwick et al., 1971). Since these findings, Lu has been mapped to chromosome 19 by genetic linkage to the third component of human complement (C3) (Eiberg et al., 1983). Evidence that Se is distal to Lu on chromosome 19q has been provided by Zelinski et al. (1989).
Keywords
Blood Group Autoimmune Hemolytic Anemia Blood Group Antigen Blood Group System Lymphocyte HomingPreview
Unable to display preview. Download preview PDF.
References
- Anstee, D. J., Mallinson, G., Yendle, J. E., Holmes, C., and Tanner, M. J. A., 1988, Evidence for the occurrence of Lu’-active glycoproteins in human erythrocytes, kidney and liver, Proceedings of the Twentieth Congress of the International Society for Blood Transfusion, Manchester, British Blood Transfusion Society, p. 263 (abstract).Google Scholar
- Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., 1990, CD44 is the principal cell surface receptor for hyaluronate, Cell 61: 1303–1313.PubMedCrossRefGoogle Scholar
- Ballas, S. K., Marcolina, M. J., and Crawford. M. N., 1992, In vitro storage and in vivo survival studies of red cells from persons with In (Lu) gene, Transfusion 32 (7): 607–611.PubMedCrossRefGoogle Scholar
- Berg, E. L., Goldstein, L. A., Jutila, M. A., Nakache, M., Picker, L. J., Sheeter, P. R., Wu, N. W., Zhou, D., and Butcher. E. C., 1988, Homing receptors and vascular addressins: Cell adhesion molecules that direct lymphocyte traffic, Immunol. Rev. 108: 5–18.CrossRefGoogle Scholar
- Bove. J. R., Allen, F. H., Jr., Chiewsilp, P., Marsh, W. L., and Cleghom, T. E., 1971, Anti-Lu4: A new antibody related to the Lutheran blood group system, Vox Sang. 21: 302–310.CrossRefGoogle Scholar
- Brown, F., Simpson, S., Cornwall. S.. Moore, B. P. L., Oyen, R., and Marsh, W. L., 1974, The recessive Lu(a—b—) phenotype: A family study, Vox Sang. 26: 259–264.PubMedCrossRefGoogle Scholar
- Callender, S. T., and Race, R. R., 1946, Serological and genetical study of multiple antibodies formed in response to blood transfusions by a patient with lupus erythematosus diffusus, Ann. Eugen. 13: 102–117.PubMedCrossRefGoogle Scholar
- Carter. W. G., and Wayner, E. A., 1988, Characterization of the class III collagen receptor, a phosphorylated transmembrane glycoprotein expressed in human nucleated cells, J. Biol. Chem. 263: 4193–4201.Google Scholar
- Contreras, M., and Tippett, P., 1984, The Lu(a—b—) syndrome and an apparent upset of PI inheritance, Vox Sang. 27: 369–371.CrossRefGoogle Scholar
- Cook, P. J. L., 1965. The Lutheran—Secretor recombination fraction in man: A possible sex difference, Ann. Hum. Genet. 28: 393–401.CrossRefGoogle Scholar
- Crawford, M. N., Greenwalt, T. G., Sasaki, T., Tippett. P., Sanger, R., and Race, R. R., 1961, The phenotype Lu(a—b—) together with unconventional Kidd groups in one family, Transfusion 1: 228–232.CrossRefGoogle Scholar
- Crawford, M. N., Tippett, P., and Sanger, R., 1974, The antigens Au’, i and PI of cells of the dominant type of Lu(a—b—), Vox Sang. 26: 283–287.PubMedCrossRefGoogle Scholar
- Cutbush. M., and Chanarin, I., 1956, The expected blood-group antibody, anti-Lu’, Nature 178: 855–856.PubMedCrossRefGoogle Scholar
- Dalchau, R., Kirkley, J., and Fabre, J. W., 1980, Monoclonal antibody to a human brain-granulocyteT lymphocyte antigen probably homologous to the W3/13 antigen of the rat, Eur. J. Immunol. 10: 745–749.PubMedCrossRefGoogle Scholar
- Daniels, G., 1988, The Lutheran blood group system: Monoclonal antibodies, biochemistry and the effect of In(Lu), in Blood Group Systems: Duffy, Kidd, and Lutheran ( S. R. Pierce and C. R. Macpherson, eds.), pp. 119–147, American Association of Blood Banks, Arlington, VA.Google Scholar
- Daniels, G., 1990, Evidence that the Auberger blood group antigens are located on the Lutheran glycoproteins, Vox Sang. 58: 56–60.PubMedCrossRefGoogle Scholar
- Daniels, G., and Khalid. G., 1989, Identification, by immunoblotting, of the structures carrying Lutheran and para-Lutheran blood group antigens, Vox Sang. 57: 137–141.PubMedCrossRefGoogle Scholar
- Daniels, G. L., Shaw, M. A., Lomas, C. G., Leak. M. R., and Tippett, P., 1986, The effect of In(Lu) on some high-incidence antigens, Transfusion 26: 171–172.PubMedCrossRefGoogle Scholar
- Daniels, G. L., Tippett, P., Palmer, D. K., Miller, Y. E., Geyer, D., and Jones, C., 1987. MER2, a red cell polymorphism defined by monoclonal antibodies, Vox Sang. 52: 107–110.PubMedCrossRefGoogle Scholar
- Damborough, J., Firth, R., Giles, C. M., Goldsmith, K. L. G., and Crawford, M. N., 1963, A ‘new’ antibody anti-Lu’Lu° and two further examples of the genotype Lu(a—b—), Nature 198: 796.CrossRefGoogle Scholar
- Denning, S. M., Le, P. T., Singer, K. H., and Haynes. B. F., 1990, Antibody against the CD44 p80 lymphocyte homing receptor molecule augments human peripheral blood T cell activation, J. Immunol. 144: 7–15.PubMedGoogle Scholar
- Dougherty, G. J., Lansdotp, P., and Humphries, R. K., 1990, Molecular cloning of CD44R, a novel uropod-associated form of the CD44 homing receptor, Exp. Hematol. 18: 585 (abstract).Google Scholar
- Eiberg, H., Mohr. J., Staub Neilsen, L., and Simsonsen, N., 1983, Genetics and linkage relationships of the C3 polymorphism: Discovery of C3-Se linkage and assignment of LES-C3-Dm-Se-PEPD-Lu synteny to chromosome 19. Clin. Genet. 24: 159–170.Google Scholar
- Ferguson, D. J., and Gaal, H. D., 1988, Some observations on the In’ antigen and evidence that anti-In’ causes accelerated destruction of radiolabeled red cells, Transfusion 28: 479–482.PubMedCrossRefGoogle Scholar
- Fitzsimmons, J., and Caggiano, V., 1981, Auto antibody to a high-frequency Lutheran antigen associated with immune hemolytic anemia and a hemolytic transfusion episode, Transfusion 2: 612 (abstract).Google Scholar
- Gilsdorf, J. R.. Judd, W. J.. and Cinat, M., 1989, Relationship of Haemophilus influenzae type b pilus structure and adherence to human erythrocytes, Infect. Immun. 57: 3259–3260.Google Scholar
- Glaser. T., Housman, D., Lewis. W. H., Gerhard, D., and Jones. C.. 1989. A fine-structure deletion map of human chromosome lip: Analysis of.11 series hybrids, Somat. Cell Mol. Genet. 15: 447–501.CrossRefGoogle Scholar
- Goldstein, L. A., Zhou, D. F., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C., 1989. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins, Cell 56: 1063–1072.PubMedCrossRefGoogle Scholar
- Gralnick, M. A., Goldfinger, D., Hatfield, P., Reid, M. E., and Marsh. W. L., 1974, Anti-Lull: Another antibody defining a high-frequency antigen related to the Lutheran blood group system, Vox Sang. 27: 52–56.PubMedCrossRefGoogle Scholar
- Greenwalt, T. J., Sasaki, T. T., and Steane, E. A., 1967, The Lutheran blood groups: A progress report with observations on the development of the antigens and characteristics of the antibodies, Transfusion 7: 189–200.PubMedCrossRefGoogle Scholar
- Guy. K., and Green, C., 1992. The influence of the In(Lu) gene on expression of CDw75 antigens on human blood cells, Immunology 75: 713–716.PubMedGoogle Scholar
- Hale, L. P., Singer, K. H., and Haynes, B. F., 1989, CD44 antibody against /n(Lu)-related p80, lymphocyte-homing receptor molecule inhibits the binding of human erythrocytes to T cells, J. Immunol. 143: 3944–3948.PubMedGoogle Scholar
- Haynes, B. F., Harden, E. A., Telen, M. J., Hemler, M. E., Strominger, J. L., Palker, T. J., Scearce, R. M., and Eisenbarth, G. S., 1983. Differentiation of human T lymphocytes I: Acquisition of a novel human cell surface protein (p80) during normal intrathymic T cell maturation. J. Immunol. 131: 1195–1200.PubMedGoogle Scholar
- Haynes, B. F.. Telen, M. J., Hale. L. P., and Denning, S. M., 1989, CD44—A molecule involved in leukocyte adherence and T-cell activation. Immunol. Today 10: 423–428.PubMedCrossRefGoogle Scholar
- Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., and St. John, T., 1989, Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium, Proc. Natl. Acad. Sci. USA 86: 4659–4663.PubMedCrossRefGoogle Scholar
- Issitt, P. D., Valinsky, J. E., Marsh, W. L., DiNapoli, J., and Gutgsell, N. S.. 1990, In vivo red cell destruction by anti-Lu6, Transfusion (Philadelphia) 30 (3): 258–260.CrossRefGoogle Scholar
- Jalkanen, S., and Jalkanen, M., 1992, Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J. Cell Biol. 116: 817–825.PubMedCrossRefGoogle Scholar
- Jalkanen, S. T.. Bargatze, R. F., Herron, L. R., and Butcher, E. C., 1986, A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man, Eur. J. Immunol. 15: 1195–1202.CrossRefGoogle Scholar
- Jalkanen, S. T., Jalkanen, M.. Bargatze, R., Tammi, M., and Butcher. E. C., 1988, Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man, J. Immunol. 141: 1615–1623.PubMedGoogle Scholar
- Judd, W. J., Marsh, W. L.. Oyer“ R.. Nichols, M. E., Allen, F. H., Jr., Contreras, M., and Stroup, M., 1977, Anti-Lu14: A Lutheran antibody defining the product of an allele at the Lu8 blood group locus, Vox Sang. 32: 214–219.Google Scholar
- Judson, P. A., Spring, F. A., Parsons, S. F., Anstee, D. J., and Mallinson, G.. 1988, Report on group 8 (Lutheran) antibodies, Rev. Fr. Transfus. Immunohematol. 31: 433–440.PubMedCrossRefGoogle Scholar
- Kalomiris, E. L.. and Bourguignon, L. Y., 1988, Mouse T lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin, J. Cell Biol. 106: 319–327.PubMedCrossRefGoogle Scholar
- Kissmeyer-Nielsen. F., 1960, A further example of anti-Lu° as a cause of a mild hemolytic disease of the newborn, Vox Sang. 5: 532–537.CrossRefGoogle Scholar
- Letarte, M., Iturbe. S.. and Quackenbush, E. J., 1985, A glycoprotein of molecular weight 85,000 on human cells of B-lineage: Detection with a family of monoclonal antibodies, Mol. Immunol. 22: 113–119.Google Scholar
- Lewis. M., Kaita, H., Coghlan, G., Philipps, S., Belcher, E., McAlpine, P. J., Coopland, G. R., and Woods, R. A., 1988, The chromosome 19 linkage group LDLR. C3, LW, APOC2, Lu, Se in man, Ann. Hum. Genet. 52: 137–144.Google Scholar
- Lucas, M. G., Green, A. M.. and Telen, M. J., 1989, Characterization of the serum /n(Lu)-related antigen: Identification of a serum protein related to erythrocyte p80, Blood 73: 596–600.PubMedGoogle Scholar
- Macllroy, M., McCreary, J., and Stroup, M., 1972, Anti-Lu8, an antibody recognizing another Lutheran-related antigen, Vox Sang. 23: 455–457.CrossRefGoogle Scholar
- McKay, C. R., Maddox. J. F.. and Wijffels, G. L., 1988, Characterization of a 95,000 molecule on sheep leucocytes homologous to murine Pgp-1 and human CD44, Immunology 65: 93–99.Google Scholar
- Mannesier, L., Rouger, P., Johnson, C. L., Meuller, K. A., and Marsh, W. L.. 1986, Acquired loss of red cell Wj antigen in a patient with Hodgkins disease, Vox Sang. 50: 240–244.CrossRefGoogle Scholar
- Marcus, D. M.. Kundu, S. K., and Suzuki, A., 1981, The P blood group system: Recent progress in immunochemistry and genetics, Semin. Hematol. 18: 63–71.Google Scholar
- Marsh, W. L., 1972, Anti-Lu5, Anti-Lu6 and anti-Lu7. Three antibodies defining high frequency antigens related to the Lutheran blood group system, Transfusion (Philadelphia) 12: 27–34.CrossRefGoogle Scholar
- Marsh, W. L., Brown, P. J.. DiNapoli, J., Beck. M. L., Wood, M., Wojcicki, R., and de la Camara. C., 1983, Anti-Wj, an antibody that defines a high-incidence antigen modified by the In(Lu) gene. Transfusion (Philadelphia) 23: 128–130.Google Scholar
- Merry, A. H., Gardner, B., Parsons, S. F., and Anstee, D. J., 1987, Estimation of the number of binding sites with murine monoclonal anti-Lu’ on human erythrocytes, Vox Sang. 53: 57–60.PubMedCrossRefGoogle Scholar
- Miller, Y. E.. Sullivan, N.. Bill, J., Geyer, D., and Jones, C., 1985, Monoclonal antibodies to two tightly linked distinct chromosome 11 encoded cell surface antigens, Am. J. Hum. Genet. 37: A233 (abstract).Google Scholar
- Mohr. J., 1951, A search for linkage between the Lutheran blood group and other hereditary characters, Acta Pathol. Microbiol. Scand. 28: 207–210.PubMedCrossRefGoogle Scholar
- Mohr, J., 1954. A Study of Linkage in Man, Munksgaard, Copenhagen.Google Scholar
- Molthan, L., Crawford, M. N.. Marsh, W. L., and Allen, F. H., Jr., 1973. Lu9, another new antigen of the Lutheran blood-group system, Vox Sang. 24: 468–471.PubMedCrossRefGoogle Scholar
- Moulds, J. M., Nickells, M. W., Moulds. J. J., Brown, M. C., and Atkinson, J. P., 1991, The C3b/ C4b receptor is recognized by the Knops, McCoy, Swain-Langley, and York blood group antisera, J. Exp. Med. 173: 1159–1163.PubMedCrossRefGoogle Scholar
- Mulley, J. C., Norman, P. C., Tippett. P., and Beal, R. W., 1988, A regional localization for an Xlinked suppressor gene (XS) for the Lutheran blood group, Hum. Genet. 78: 127–129.PubMedCrossRefGoogle Scholar
- Norman, P. C., Tippett. P., and Beal, R. W.. 1986, An Lu(a—b—) phenotype caused by an X-linked recessive gene, Vox Sang. 51: 49–52.PubMedCrossRefGoogle Scholar
- Nottenberg, C.. Rees, G., and St. John, T., 1989, Isolation of mouse CD44 cDNA: Structural features are distinct from the primate cDNA, Proc. Natl. Acad. Sci. USA 86: 8521–8525.CrossRefGoogle Scholar
- Ohno, S., 1970. Evolution by Gene Duplication, Allen & Unwin, London.Google Scholar
- Omary, M. B.. Trowbridge, I. S., Letarte, M., Kagnoff, M. F., and Isacke, C. M., 1988, Structural heterogeneity of human PgP-1 and its relationship with p85, Immunogenetics 27: 460–464.PubMedCrossRefGoogle Scholar
- Parsons, S. F., Mallinson, G., Judson, P. A., Anstee, D. J., Tanner, M. J. A., and Daniels, G. L., 1987, Evidence that the Lu’ blood group antigen is located on red cell membrane glycoproteins of 85 and 78kd, Transfusion 27: 61–63.PubMedCrossRefGoogle Scholar
- Parsons, S. F.. Mawby, W. J., Anstee, D. J., 1994, Lutheran blood group glycoprotein is a new member of the immunoglobulin superfamily of proteins, Vox Sang. (Suppl. 2 ) 67: 1 (abstract).Google Scholar
- Parsons, S. F., Jones, J., Poole. J., Anstee, D. J., Ilium, N., and Wickramasinghe, S. N., 1992, An In(a—b—) individual whose red cells are deficient in CD44 glycoprotein also lacks the high incidence antigen AnWj, Transfus. Med. (Suppl.) 2: 65 (abstract).Google Scholar
- Picker, L. J., de los Toyos, J., Telen, M. J., Haynes, B. F., and Butcher, E. C., 1989, Monoclonal antibodies against CD44 [In(Lu)-related p80], Pgp-1, and the Hermes class of lymphocyte receptors bind to the same molecule, J. Immunol. 142: 2046–2051.PubMedGoogle Scholar
- Poole, J.. and Giles, C. M.. 1982, Observations on the Anton antigen and antibody, Vox Sang. 43: 220–222.PubMedCrossRefGoogle Scholar
- Poole. J., and van Alphen, L., 1988, Haemophilus influenzae receptor and the AnWj antigen. Transfusion 28:289 (letter).Google Scholar
- Poole, J.. Levene, C., van Alphen, L., Sela, R., Bennett, M., and Spruell, P., 1989, Serological and microbiological studies in a family showing inheritance of AnWj antigen, Transfusion 29S: 34 (abstract).Google Scholar
- Rao, N., Ferguson, D. J., Lee, S. F., and Telen, M. J., 1991, Identification of human erythrocyte blood group antigens on the C3b/C4b receptor (CRI), J. Immunol. 146: 3502–3507.PubMedGoogle Scholar
- Renwick, J. H., Bundey, S. E., Ferguson-Smith, M. A., and Izatt, M. M., 1971, Confirmation of linkage of the loci for myotonic dystrophy and ABH secretion, J. Med. Genet. 8: 407–416.PubMedCrossRefGoogle Scholar
- St. John, T., Meyer, J., Idzerda, R., and Gallatin, W. M., 1990, Expression of CD44 confers a new adhesive phenotype on transfected cells, Cell 60 (1): 45–52.CrossRefGoogle Scholar
- Screaton, G. R., Bell, M. V., Jackson, D. G.. Cornelis. F. B., Gerth, U., and Bell, J. I., 1992, Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons, Proc. Natl. Acad. Sci. USA 89: 12160–12164.PubMedCrossRefGoogle Scholar
- Shaw, M. A., Leak, M. R., Daniels. G. L., and Tippett, P., 1984, The rare Lutheran blood group phenotype Lu(a—b—): A genetic study, Ann. Hum. Genet. 48: 229–237.PubMedCrossRefGoogle Scholar
- Sinclair, M., Buchanan, D. I., Tippett, P., and Sanger, R., 1973, Another antibody related to the Lutheran blood group system (Much), Vox Sang. 25: 156–161.PubMedCrossRefGoogle Scholar
- Spring, F. A., Dalchau, R., Daniels, G. L., Mallinson, G., Judson, P. A., Parsons, S. F., Fabre, J. W., and Anstee, D. J., 1988, The In and Inb blood group antigens are located on a glycoprotein of 80,000 MW (the CDw44 glycoprotein) whose expression is influenced by the In(Lu) gene, Immunology 64: 37–43.PubMedGoogle Scholar
- Stamenkovic, I., Amiot, M., Pesandro. J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymphocyte homing is a member of the cartilage link protein family, Cell 56: 1057–1062.Google Scholar
- Stamenkovic, I., Aruffo, A., Amiot, M., and Seed, B., 1991, The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells, EMBO J. 10: 343–348.PubMedGoogle Scholar
- Sy, M. S., Guo, Y. J., and Stamenkovic, I., 1991, Distinct effects of two CD44 isoforms on tumor growth in vivo, J. Exp. Med. 174: 859–866.PubMedCrossRefGoogle Scholar
- Taliano, V., Guevin, R. M., and Tippett, P., 1973, The genetics of a dominant inhibitor of the Lutheran antigens, Vox Sang. 24: 42–47.PubMedCrossRefGoogle Scholar
- Telen, M. J., and Ferguson, D. J., 1990, Relationship of Inb antigen to other antigens on In(Lu)-related p80, Vox Sang. 58: 118–121.PubMedCrossRefGoogle Scholar
- Telen, M. J., and Green, A. M., 1988, Human red cell antigens. V. Expression of /n(Lu)-related p80 antigens by recessive-type Lu(a—b—) red cells, Transfusion 28 (5): 430–434.PubMedCrossRefGoogle Scholar
- Telen, M. J., Eisenbarth, G. S.. and Haynes, B. F., 1983, Human erythrocyte antigens: Regulation of a novel red cell surface antigen by the inhibitor Lutheran In(Lu) gene, J. Clin. Invest. 71: 1878–1886.PubMedCrossRefGoogle Scholar
- Telen, M. J., Palker, T. J., and Haynes, B. F., 1984, Human erythrocyte antigens. II: The In(Lu) gene regulates expression of an antigen residing on an 80-kilodalton protein of human erythrocytes, Blood 64: 599–606.PubMedGoogle Scholar
- Telen, M. J., Shehata, H., and Haynes, B. F., 1986, Human medullary thymocyte p80 antigen and In(Lu)-related p80 antigen reside on the same protein, Hum. Immunol. 17: 311–324.PubMedCrossRefGoogle Scholar
- Telen, M. J., Rogers, I., and Letarte, M., 1987, Further characterization of erythrocyte p80 and the membrane protein defect of In(Lu) Lu (a—b—) erythrocytes, Blood 70: 1475–1481.PubMedGoogle Scholar
- Telen, M. J., Green, A. M., and Young, T., 1988, Serological and biochemical characterization of monoclonal antibodies against red cell markers related to expression of Lutheran blood group antigens, Rev. Fr. Transfus. Immunohematol. 31: 421–428.PubMedCrossRefGoogle Scholar
- Telen, M. J., Roberts, K. B., and Bartlett, J. A., 1990, HIV-associated autoimmune hemolytic anemia: Report of a case and review of the literature, J. AIDS 3: 933–937.Google Scholar
- Telen, M. J., Rao, N., Udani, M., Liao, H.-X., and Haynes, B. F., 1993, The AnWj blood group antigen Hemophilus influenzae receptor resides on a high-molecular weight protein expressed by CD44 transfectants, Clin. Res. 41 (2): 235 (abstract).Google Scholar
- Tippett, P., 1971, A case of suppressed Lu’ and Lub antigens, Vox Sang. 20: 378–380.PubMedCrossRefGoogle Scholar
- Tippett, P., 1986, Contributions of monoclonal antibodies to understanding one new and some old blood group systems, in Red Cell Antigens and Antibodies ( G. Garratty, ed.), pp. 83–98, American Association of Blood Banks, Arlington, VA.Google Scholar
- Tippen, P., 1990, Regulator genes affecting red cell antigens, Transfus. Med. Rev. 4:56–68. Toivanen, P., and Hirvonen, T., 1973, Antigens Duffy, Kell, Kidd, Lutheran and Xg’ on fetal cells, Vox Sang. 24: 372–376.Google Scholar
- Udden, M. M., Umeda, M., Hirano, Y., and Marcus, D. M., 1987, New abnormalities in the morphology, cell surface receptors, and electrolyte metabolism of In(Lu) erythrocytes, Blood 69: 5257.Google Scholar
- Alphen, L., Poole, J., and Overbeeke, M., 1986, The Anton blood group antigen is the erythrocyte receptor for Haemophilus influenzae, FEMS Microbiol. Leu. 37: 69–71.CrossRefGoogle Scholar
- Alphen, L., Poole, J., Geelen, L., and Zanen, H. C., 1987, The erythrocyte and epithelial cell receptors for Haemophilus influenzae are expressed independently, Infect. Immun. 55: 2355–2358.PubMedGoogle Scholar
- Alphen, L., van Ham, M., Geelen-van den Broek, L., and Pieters, T., 1989, Relationship between secretion of the Anton blood group antigen in saliva and adherence of Haemophilus influenzae to oropharynx epithelial cells, FEMS Microbiol. Immunol. 47: 357–362.CrossRefGoogle Scholar
- Alphen, L., Levene, C.. van den Broek, L. G., Poole, J., Bennett, M., and Danken, J., 1990, Combined inheritance of epithelial and erythrocyte receptors for Haemophilus influenzae, Infect. Immun. 58: 3807–3809.PubMedGoogle Scholar
- Wayner, E. A., Carter, W. G., Piotrowicz, R. S., and Kunicki, T. J.. 1988, The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: Preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with glycoproteins Ic-II-a, J. Cell Biol. 107: 1881–1891.PubMedCrossRefGoogle Scholar
- Webb, D. S. A., Shimuzu, Y., van Seventer, G. A., Shaw, S.. and Gerrard, T. L.. 1990, LFA-3. CD44 and CD45: Physiologic triggers of human monocyte TNF and II-1 release, Science 249: 1295–1297.PubMedCrossRefGoogle Scholar
- Zelinski, T., Coghlan, G., Greenberg, C. R., McAlpine, P. J., and Lewis, M., 1989, Evidence that Se is distal to Lu on chromosome 19q, Transfusion (Philadelphia) 29: (4): 304–305.CrossRefGoogle Scholar
- Zelinski, T., Kaita, H., Coghlan, G.. and Phillipps, S., 1991, Assignment of the Auberger red cell antigen polymorphism to the Lutheran blood group system: genetic justification, Vox Sang. 61 (4): 275–276.PubMedCrossRefGoogle Scholar
- Zhou, D. F. H., Ding, J. F., Picker, L. J., Bargatze, R. F., Butcher, E. C., and Goeddel, D. V., 1989, Molecular cloning and expression of Pgp-1. The mouse homolog of human H-CAM (Hermes) lymphocyte homing receptor, J. Immunol. 143: 3390–3395.PubMedGoogle Scholar