Leukocyte Integrins

  • Ian Dransfield
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)

Abstract

Adhesion of macrophages to other cell types and to components of the extracellular matrix is essential for their immunomodulatory and effector functions. Cell surface receptors that mediate adherence can deliver signals within the cell that result in cellular activation and differentiation. Moreover, modulation of the function of cell surface receptors allows two-way communication across the plasma membrane. Thus, the macrophage is able to “sense” and respond appropriately to local environmental stimuli. Dialog between the cell and its local microenvironment is dynamic, made possible by regulation of the repertoire and function of adhesive receptors present on the macrophage surface. Three major families of cell surface molecules that have a role in cellular adhesion processes have been defined, namely, the immunoglobulin (Williams and Barclay, 1988), selectin (Stoolman, 1989), and integrin (Hynes, 1987) families. The subfamily of the integrins known as leukocyte integrins mediates a number of adhesive interactions of leukocytes that are pivotal to effective immune function (see Springer, 1990, for a recent review). These receptors were first identified as having roles in cell—cell contact and phagocytic responses of macrophages, and studies relating to their structure, function, and regulation continue to shed light on the molecular mechanisms of leukocyte adhesion processes.

Keywords

Leukocyte Adhesion Leukocyte Adhesion Deficiency Vitronectin Receptor Conformational Alteration Fibronectin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altieri, D. C., and Edgington, T. S., 1988, The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor, J. Biol. Chem. 263: 7007–7015.PubMedGoogle Scholar
  2. Altieri, D. C., Bader, R., Mannucci, P. M., and Edgington, T. S., 1988, Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an inducible specificity for fibrinogen, J. Cell Biol. 107: 1893–1900.PubMedCrossRefGoogle Scholar
  3. Altieri, D. C., Agbanyo, F. R., Plescia, J., Ginsberg, M. H., Edgington, T. S., and Plow, E. F., 1990, A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD1 1 b/CD18), J. Biol. Chem. 265: 12119–12122.PubMedGoogle Scholar
  4. Altmann, D. M., Hogg, N., Trowsdale, J., and Wilkinson, D., 1989, Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells, Nature (London) 338: 512–514.CrossRefGoogle Scholar
  5. Anderson, D. C., and Springer, T. A., 1987, Leukocyte adhesion deficiency; an inherited defect in the Mac-1, LFA-1 and p150,95 glycoproteins, Annu. Rev. Med. 38: 175–194.PubMedCrossRefGoogle Scholar
  6. Anderson, D. C., Schmalsteig, F. C., Arnaout, M. A., Kohl, S., Tosi, M. F., Dana, N., Buffone, G. J., Hughes, B. J., Brinkley, B. R., Dickey, W. D., Abramson, J. S., Springer, T., Boxer, L. A., Hollers, J. M., and Smith, C. W., 1984, Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of a high molecular weight surface glycoprotein (gp138): Common relationship to diminished cell adherence, J. Clin. Invest. 74: 536–551.PubMedCrossRefGoogle Scholar
  7. Arnaout, M. A., 1990, Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response, Immunol. Rev. 114: 145–180.PubMedCrossRefGoogle Scholar
  8. Arnaout, M. A., Pitt, J., Coren, H. J., Melamed, J., Rosen, F. S., and Colten, H. R., 1982, Deficiency of a granulocyte-membrane protein (gp150) in a boy with recurrent bacterial infections, N. EngL J. Med. 306: 693–699.PubMedCrossRefGoogle Scholar
  9. Arnaout, M. A., Spits, H., Terhorst, C., Pitt, J., and Todd, R. F., 1984, Deficiency of a leukocyte glycoprotein (LFA-1) in two patients with Mol deficiency. Effects of cell activation on Mol/LFA-1 surface expression on normal and deficient leukocytes, J. Clin. Invest. 74: 1291–1300.PubMedCrossRefGoogle Scholar
  10. Arnaout, M. A., Lanier, L. L., and Faller, D. V., 1988, Relative contribution of the leukocyte molecules Mol, LFA-1, p150,95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium in tissue-and stimulus-specific, J. Cell. Physiol. 137: 305–309.PubMedCrossRefGoogle Scholar
  11. Arnaout, M. A., Dana, N., Gupta, S. K., Tenen, D. G., and Fathallah, D. M., 1990, Point mutations impairing cell surface expression of the ß subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency, J. Clin. Invest. 85: 977–981.PubMedCrossRefGoogle Scholar
  12. Bainton, D. F., Miller, L. J., Kishimoto, T. K., and Springer, T. A., 1987, Leukocyte adhesion receptors are stored in peroxidase negative granules of human neutrophils, J. Exp. Med. 166: 1641–1653.PubMedCrossRefGoogle Scholar
  13. Beatty, P. G., Harlen, J. M., Rosen, H., Hansen, J. A., Ochs, H. D., Price, T. H., Taylor, R. F., and Klebanoff, S. J., 1984, Absence of a monoclonal antibody-defined protein complex in a boy with recurrent bacterial infections, Lancet 1: 535–537.PubMedCrossRefGoogle Scholar
  14. Beller, D. I., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor, J. Exp. Med. 156: 1000–1009.PubMedCrossRefGoogle Scholar
  15. Berendt, A. R., McDowall, A., Craig, A. G., Bates, P. A., Sternberg, M. J. E., Marsh, K., Newbold, C. I., and Hogg, N., 1992, The binding site on ICAM-1 for Plasmodium falciparum infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site, Cell, 68: 71–81.PubMedCrossRefGoogle Scholar
  16. Berke, G., and Gabison, D., 1975, Energy requirements of the binding and lytic steps of T-lymphocyte-mediated cytolysis of leukemia cells, Eur. J. Immunol. 5: 671–675.PubMedCrossRefGoogle Scholar
  17. Bowen, T. J., Ochs, H. D., Altman, L. C., Price, T. H., and van Epps, D. E., 1982, Severe recurrent bacterial infections associated with defective adherence and chemotaxis in two patients with neutrophils deficient in a cell associated glycoprotein, J. Pediatr. 101: 932–940.PubMedCrossRefGoogle Scholar
  18. Breard, J., Reinherz, E., King, P. C., Goldstein, G., and Schlossman, S. F., 1980, A monoclonal antibody reactive with peripheral blood monocytes, J. Immunol. 124: 1943–1948.PubMedGoogle Scholar
  19. Brown, E. J., Bohnsack, J. F., and Gresham, H. D., 1988, Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognise the Mac-1 antigen, J. Clin. Invest. 81: 365–375.PubMedCrossRefGoogle Scholar
  20. Brown, E. J., Hooper, L., Ho, T., and Gresham, H., 1990, Integrin associated protein: A 50-kD plasma membrane antigen physically and functionally associated with integrins, J. Cell Biol. 111: 2785–2794.PubMedCrossRefGoogle Scholar
  21. Burn, P., Kupfer, A., and Singer, S. J., 1989, Dynamic membrane-cytoskeletal interactions: Specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes, Proc. Natl. Acad. Sci. USA 85: 497–501.CrossRefGoogle Scholar
  22. Burton, J., Goldman, C. K., Rao, P., Moos, M., and Waldmann, T. A., 1990, Association of intercellular adhesion molecule 1 with the multichain high-affinity interleukin 2 receptor, Proc. Natl. Acad. Sci. USA 87: 7329–7333.PubMedCrossRefGoogle Scholar
  23. Buyon, J. P., Abramson, S. B., Philips, M. R., Slade, S. G., Ross, G. D., Weissmann, G., and Winchester, R. J., 1988, Dissociation between increased surface expression of Gp 165/95 and homotypic neutrophil aggregation, J. Immunol. 140: 3156–3160.PubMedGoogle Scholar
  24. Carpen, O., Pallai, P., and Springer, T. A., 1990, Association of ICAM-1 with cytoskeleton, J. Cell Biol. 111: A1423.Google Scholar
  25. Carrell, N. A., Fitzgerald, L. A., Steiner, B., Erickson, H. P., and Phillips, D. R., 1985, Structure of human platelet membrane glycoproteins IIb and Iila as determined by electron microscopy, J. Biol. Chem. 260: 1743–1749.PubMedGoogle Scholar
  26. Chatila, T. A., and Geha, R. S., 1988, Phosphorylation of T cell membrane proteins by activators of protein kinase C, J. Immunol. 140: 4308–4314.PubMedGoogle Scholar
  27. Chatila, T. A., Geha, R. F., and Arnaout, M. A., 1989, Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecule, J. Cell Biol. 109: 3435–3444.PubMedCrossRefGoogle Scholar
  28. Clayberger, C., Wright, A., Medeiros, L. J., Koller, T. D., Link, M. P., Smith, S. D., Warnke, R. A., and Krensky, A. M., 1987, Absence of cell surface LFA-1 as an escape from immunosurveillance, Lancet 11: 1327–1328.Google Scholar
  29. Conforti, G., Zanetti, A., Pasquali-Ronchetti, I., and Qauglino, D., 1990, Modulation of vitronectin receptor binding by membrane lipid composition, J. Biol. Chem. 265: 4011–4019.PubMedGoogle Scholar
  30. Corbi, A. L., Miller, L. J., O’Connor, K., Larson, R. S., and Springer, T. A., 1987, DNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150,95, EMBO J. 6: 4023–4028.PubMedGoogle Scholar
  31. Corbi, A. L., Kishimoto, T. K., Miller, L. J., and Springer, T. A., 1988a, The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD 11 b) alpha subunit: Cloning, primary structure and relation to the integrins, von Willebrand factor and factor B, J. Biol. Chem. 263: 12403–12411.PubMedGoogle Scholar
  32. Corbi, A. L., Larson, R. S., Kishimoto, T. K., Springer, T. A., and Morton, C. C., 1988b, Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1 and p150,95, J. Exp. Med. 167: 1597–1607.PubMedCrossRefGoogle Scholar
  33. Corbi, A. L., Garcia-Aguilar, J., and Springer, T. A., 1990, Genomic structure of an integrin a subunit, the leukocyte p150,95 molecule, J. Biol. Chem. 265: 2782–2788.PubMedGoogle Scholar
  34. Crowley, C. A., Curnutte, J. J., Rosin, R. E., Andre-Schwartz, J., Klempner, M., Snyderman, R., Southwick, F. S., Stossel, T. P., and Babior, B. M., 1980, An inherited abnormality of neutrophil adhesion: Its genetic transmission and association with a missing protein, N. Engl. J Med. 302: 1163–1168.PubMedCrossRefGoogle Scholar
  35. Dahms, N. M., and Hart, G. W., 1985, Lymphocyte function-associated antigen-1 (LFA-1) contains sulfated N-linked oligosaccharides, J. Immunol. 134: 3978–3986.PubMedGoogle Scholar
  36. Dana, N., Todd, R. F., Colten, H. R., and Arnaout, M. A., 1984, Deficiency of a monocyte-granulocyte surface glycoprotein (Mo1) in man, J. Clin. Invest. 73: 153–159.PubMedCrossRefGoogle Scholar
  37. Dana, N., Styrt, B., Griffin, J. D., Todd, R. F., III, Klempner, M. S., and Arnaout, M. A., 1986, Two functional domains in the phagocyte membrane glycoprotein Mo l identified with monoclonal antibodies, J. Immunol. 137: 3259–3263.PubMedGoogle Scholar
  38. Davies, K. A., Toothill, V. J., Savill, J., Hotchin, N., Peters, A. M., Pearson, J. D., Haslett, C., Burke, M., Law, S. K. A., Mercer, N. F. G., Walport, M. J., and Webster, A. D. B., 1991, A 19-year-old man with leucocyte adhesion deficiency. In vitro and in vivo studies of leucocyte function, Clin. Exp. Immunol. 84: 223–231.PubMedCrossRefGoogle Scholar
  39. Davignon, D., Martz, E., Reynolds, T., Kurzinger, K., and Springer, T. A., 1981, Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing, Proc. Natl. Acad. Sci. USA 78: 4535–4539.PubMedCrossRefGoogle Scholar
  40. de Fougerolles, A. R., Stacker, S. A., Schwarting, R., and Springer, T. A., 1991, Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1, J. Exp. Med. 174: 253–267.PubMedCrossRefGoogle Scholar
  41. Detmers, P. A., Wright, S. D., Olsen, E., Kimball, B., and Cohn, Z. A., 1987, Aggregation of complement receptors on human neutrophils in the absence of ligand, J. Cell. Biol. 105: 1137–1145.PubMedCrossRefGoogle Scholar
  42. Diamond, M. S., Staunton, D. E., de Fougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A., 1990, ICAM-1 (CD54) a counter receptor for Mac-1 (CD! l b/CD 18), J. Cell Biol. 111: 3129–3139.PubMedCrossRefGoogle Scholar
  43. Diamond, M. S., Staunton, D. E., Marlin, S. D., and Springer, T. A., 1991, Binding of the integrin Mac-1 (CD! lb/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation, Cell 65: 961–971.PubMedCrossRefGoogle Scholar
  44. Dimanche, M. T., Le Deist, F., Fischer, A., Arnaout, M. A., Griscelli, C., and Lisowska-Grospierre, B., 1987, LFA-1 beta chain synthesis and degradation in patients with leukocyte-adhesive proteins deficiency, Eur. J. Immunol. 17: 417–419.PubMedCrossRefGoogle Scholar
  45. Dougherty, J. G., Murdoch, S., and Hogg, N., 1987, The function of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response, Eur. J. Immunol. 18: 35–39.CrossRefGoogle Scholar
  46. Dransfield, I., and Hogg, N., 1989, Regulated expression of a Mgt’ binding epitope on leukocyte integrin alpha subunits, EMBO J. 12: 3759–3765.Google Scholar
  47. Dransfield, I., Cabanas, C., Craig, A., and Hogg, N., 1992, Divalent cation regulation of the function of the leukocyte integrin LFA-1, J. Cell Biol., 116: 219–226.PubMedCrossRefGoogle Scholar
  48. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., Lam, S. C.-T., and Plow, E. F., 1988, Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor, Science 242: 91–93.PubMedCrossRefGoogle Scholar
  49. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., and Plow, E. F., 1990, The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit, J. Biol. Chem. 265: 3440–3446.PubMedGoogle Scholar
  50. Du, X., Plow, E. F., Frelinger, A. L., III, O’Toole, T. E., Loftus, J. C., and Ginsberg, M. H., 1991, Ligands “activate” integrin «IIbß3 (platelet GPIIb-IIIa), Cell 65: 409–416.PubMedCrossRefGoogle Scholar
  51. Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function-associated antigen-I (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107: 321–331.PubMedCrossRefGoogle Scholar
  52. Dustin, M. L., and Springer, T. A., 1989, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature (London) 341: 619–624.CrossRefGoogle Scholar
  53. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A., 1986, Induction by IL-1 and interferon-gamma: Tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1), J. Immunol. 137: 245–254.PubMedGoogle Scholar
  54. Dustin, M. L., Singer, K. H., Tuck, D. T., and Springer, T. A., 1988, Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon-gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1), J. Exp. Med. 167: 1323–1340.PubMedCrossRefGoogle Scholar
  55. Edwards, J. G., Hameed, H., and Campbell, G., 1988, Induction of fibroblast spreading by Mn2+: A possible role for unusual binding sites for divalent cations in receptors for proteins containing ArgGly-Asp, J. Cell Sci. 89: 507–513.PubMedGoogle Scholar
  56. Figdor, C. G., van Kooyk, Y., and Keizer, G. D., 1990, On the mode of action of LFA-1, Immunol. Today 11: 277–280.PubMedCrossRefGoogle Scholar
  57. Frelinger, A. L., Lam, S. C.-T., Plow, E. F., Smith, M. A., Loftus, J. C., and Ginsberg, M. H., 1988, Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion, J. Biol. Chem. 263: 12397–12402.PubMedGoogle Scholar
  58. Frelinger, A. L., III, Cohen, I. F., Plow, E. F., Smith, M. A., Roberts, J., Lam, S. C.-T., and Ginsberg, M. H., 1990, Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers, J. Biol. Chem. 265: 6349–6352.Google Scholar
  59. Ginsberg, M. H., Lightsey, A., Kunicki, T. J., Kaufmann, A., Marguerie, G., and Plow, E. F., 1986, Divalent cation regulation of the surface orientation of platelet glycoprotein IIb, J. Clin. Invest. 78: 1103–1111.PubMedCrossRefGoogle Scholar
  60. Golstein, P., and Smith, E. T., 1976, The lethal hit stage of mouse T and non-T cell-mediated cytolysis: Differences in cation requirement and characterization of an analytical “cation pulse” method, Eur. J. Immunol. 6: 31–37.PubMedCrossRefGoogle Scholar
  61. Gregory, C. D., Murray, R. J., Edwards, C. F., and Rickinson, A. B., 1988, Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumor cell escape from virus-specific T cell surveillance, J. Exp. Med. 167: 1811–1824.PubMedCrossRefGoogle Scholar
  62. Hara, T., and Fu, S. M., 1985, Phosphorylation of alpha, beta subunits of 180/100 kDa polypeptides (LFA-1) and related antigens, in Leukocyte Typing II ( E. L. Reinherz, B. F. Haynes, L. M. Nadler, and I. D. Bernstein, eds.), pp. 77–84 Springer-Verlag, Berlin.Google Scholar
  63. Haskard, D., Cavender, D., Beatty, P., Springer, T. A., and Ziff, M., 1986, T lymphocyte adhesion to endothelial cells: Mechanisms demonstrated by anti-LFA-1 monoclonal antibodies, J. Immunol. 137: 2901–2906.PubMedGoogle Scholar
  64. Hemler, M. E., 1990, VLA proteins in the integrin family: Structures, functions and their role in leukocytes, Annu. Rev. Immunol. 8: 365–400.PubMedCrossRefGoogle Scholar
  65. Henney, C. S., and Bubbers, J. E., 1973, Antigen-T lymphocyte interactions: Inhibition by cytochalasin B, J. Immunol. 111: 85–91.PubMedGoogle Scholar
  66. Hibbs, M. L., Wardlaw, A. J., Stacker, S. A., Anderson, D. C., Lee, A., Roberts, T. M., and Springer, T. A., 1990, Transfection of cells from patients with leukocyte adhesion deficiency with an integrin beta subunit (CD18) restores lymphocyte function-associated antigen-1 expression and function, J. Clin. Invest. 85: 674–681.PubMedCrossRefGoogle Scholar
  67. Hibbs, M. L., Xu, H., Stacker, S. A., and Springer, T. A., 1991, Regulation of adhesion to ICAM-1 by the cytoplasmic domain of the LFA-1 integrin ß subunit, Science 251: 161 1–1613.Google Scholar
  68. Hickstein, D. D., Back, A. L., and Collins, S. J., 1989, Regulation of expression of the CDI lb and CDI8 subunits of the PMN adherence receptor during myeloid differentiation, J. Biol. Chem. 164: 21812–21817.Google Scholar
  69. Hildreth, J. E. K., and Orentas, R. J., 1989, Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation, Science 244: 1075–1078.PubMedCrossRefGoogle Scholar
  70. Hogg, N., 1989, The leukocyte integrins, Immunol. Today 10: 111–114.PubMedCrossRefGoogle Scholar
  71. Horley, K. J., Carpento, C., Baker, B., and Takei, F., 1989, Molecular cloning of murine intercellular adhesion molecule (ICAM-1), EMBO J. 8: 2889–2896.PubMedGoogle Scholar
  72. Horwitz, A., Duggan, K., Burk, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage, Nature (London) 320: 531–533.CrossRefGoogle Scholar
  73. Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–554.PubMedCrossRefGoogle Scholar
  74. Keizer, G. D., to Velde, A. A., Schwarting, R., Figdor, C. G., and de Vries, J. E., 1987, Role of p150,95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes, Eur. J. Immunol. 17: 1317–1322.PubMedCrossRefGoogle Scholar
  75. Keizer, G. D., Visser, W., Vliem, M., and Figdor, C. G., 1988, A monoclonal antibody (NKI-L16) directed against a unique epitope of human leukocyte function-associated antigen 1 induces homotypic cell-cell interactions, J. Immunol. 140: 1393–1400.PubMedGoogle Scholar
  76. Kelleher, D., Murphy, A., and Cullen, D., 1990, Leukocyte function-associated antigen 1 (LFA-1) is a signalling molecule for cytoskeletal changes in a human T cell line, Eur. J. Immunol. 20: 2351–2354.PubMedCrossRefGoogle Scholar
  77. Kirchhofer, D., Grzesiak, J., and Pierschbacher, M. D., 1991, Calcium as a potential physiological regulator of integrin-mediated cell adhesion, J. Biol. Chem. 266: 4471–4477.PubMedGoogle Scholar
  78. Kishimoto, T. K., O’Connor, K., Lee, A., Roberts, T. M., and Springer, T. A., 1987a, Cloning of the beta subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family, Cell 48: 681–690.PubMedCrossRefGoogle Scholar
  79. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A., 1987b, Heterogenous mutations in the beta subunit common to the LFA-1, Mac-1, p150,95 glycoproteins cause leukocyte adhesion deficiency, Cell 50: 193–202.PubMedCrossRefGoogle Scholar
  80. Kishimoto, T. K., Larson, R. S., Corbi, A. L., Dustin, A. L., Staunton, D. E., and Springer, T. A., 1989a, The leukocyte integrins, Adv. Immunol. 46: 149–182.PubMedCrossRefGoogle Scholar
  81. Kishimoto, T. K., O’Conner, K., and Springer, T. A., 1989b, Leukocyte adhesion deficiency: Aberrent splicing of a conserved integrin sequence causes a moderate deficiency phenotype, J. Biol. Chem. 264: 3588–3595.PubMedGoogle Scholar
  82. Koopman, G., van Kooyk, Y., de Graaff, M., Meyer, C. J. L. M., Figdor, C. G., and Pals, S. T., 1990, Triggering of the CD44 antigen on T lymphocytes promotes T cell adhesion through the LFA-1 pathway, J. Immunol. 145: 3589–3593.PubMedGoogle Scholar
  83. Kouns, W. C., Wall, C. D., White, M. M., Fox, C. F., Jennings, L. K., 1990, A conformation-dependent epitope of human platelet glycoprotein IIIa, J. Biol. Chem. 265: 20594–20601.PubMedGoogle Scholar
  84. Kupfer, A., and Singer, S. J., 1989, Cell biology of cytotoxic and helper T cell functions: Immunofluorescence microscopic studies of single cells and cell couples, Annu. Rev. Immunol. 7: 309–337.PubMedCrossRefGoogle Scholar
  85. Kurzinger, K., Ho, M. K., and Springer, T. A., 1982, Structural homology of a macrophage differentiation antigen and an antigen involved in T cell mediated killing, Nature (London) 296: 668–670.CrossRefGoogle Scholar
  86. Larson, R. S., and Springer, T. A., 1990, Structure and function of leukocyte integrins, Immunol. Rev. 114: 181–217.PubMedCrossRefGoogle Scholar
  87. Larson, R. S., Corbi, A. L., Berman, L., and Springer, T. A., 1989, Primary structure of the leukocyte function-associated molecule-1 alpha subunit: An integrin with an embedded domain defining a protein superfamily, J. Cell Biol. 108: 703–712.PubMedCrossRefGoogle Scholar
  88. Lauener, R. P., Geha, R. S., and Vercelli, D., 1990, Engagement of the monocyte surface antigen CD14 induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic aggregation, J. Immunol. 145: 1390–1394.PubMedGoogle Scholar
  89. Law, S. K. A., Gagnon, J., Hildreth, J. E. K., Wells, C. E., Willis, A. C., and Wong, A. J., 1987, The primary structure of the beta subunit of the cell surface adhesion glycoprotein LFA-1, CR3, and p150,95 and its relationship to the fibronectin receptor, EMBO J. 6: 915–919.PubMedGoogle Scholar
  90. Lawrence, M. B., and Springer, T. A., 1991, Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins, Cell 65: 859–873.PubMedCrossRefGoogle Scholar
  91. Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V., 1990, Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium, Blood 75: 227–237.PubMedGoogle Scholar
  92. Leptin, M., Aebersold, R., and Wilcox, M., 1987, Drosophila position-specific antigens resemble the vertebrate fibronectin receptor family, EMBO J 6: 1037–1043.PubMedGoogle Scholar
  93. Lo, S. K., Detmers, P. A., Levin, S. M., and Wright, S. D., 1989, Transient adhesion of neutrophils to endothelium, J. Exp. Med. 169: 1779–1793.PubMedCrossRefGoogle Scholar
  94. Loftus, J. C., O’Toole, T. E., Plow, E. F., Glass, A., Frelinger, A., III, and Ginsberg, M. H., 1990, A i33 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation, Science 249: 915–918.PubMedCrossRefGoogle Scholar
  95. Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Witz, J. L., Detmers, P. A., Wright, S. D., and Silverstein, S. C., 1991, CD 11 c/CD 18 on neutrophils recognizes a domain at the N terminus of the A-a chain of fibrinogen, Proc. Natl. Acad. Sci. USA 88: 1044–1048.CrossRefGoogle Scholar
  96. Lorant, D. E., Patel, K. D., McIntyre, T. M., McEver, R. P., Prescott, S. M., and Zimmerman, G. A., 1991, Co-expression of GMP-140 and PAF by endothelium stimulated with histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils, J. Cell Biol. 115: 223–234.PubMedCrossRefGoogle Scholar
  97. Macnntyre, E. A., Roberts, P. J., Abdul-Gaffar, R., Morgan, J., and Linch, D. C., 1990, Activation of monocytic cells by monoclonal antibodies to the CD1 la/CD18 (LFA-1) complex: Mediation by Fc receptor, Immunology 69: 574–579.Google Scholar
  98. Marlin, S. D., Morton, C. C., Anderson, D. C., and Springer, T. A., 1986, LFA-1 immunodeficiency disease: Definition of the genetic defect and chromosomal mapping of a and ß subunits of the lymphocyte function-associated antigen 1 (LFA-1) by complementation in hybrid cells, J. Exp. Med. 164: 855–867.PubMedCrossRefGoogle Scholar
  99. Martz, E., 1980, Immune T lymphocyte to tumour cell adhesion: Magnesium sufficient, calcium insufficient, J. Cell Biol. 84: 584–598.PubMedCrossRefGoogle Scholar
  100. Martz, E., 1987, LFA-1 and other accessory molecules functioning in adhesions of T and B lymphocytes, Human Immunol. 18: 3–37.CrossRefGoogle Scholar
  101. Merrill, J. T., Slade, S. G., Weissmann, G., Winchester, R., and Buyon, J. P., 1990, Two pathways of CD 1 1 b/CD18-mediated neutrophil aggregation with different involvement of protein kinase C-dependent phosphorylation, J. Immunol. 145: 2608–2615.PubMedGoogle Scholar
  102. Micklem, R. J., and Sim, R. B., 1985, Isolation of complement fragment-iC3b-binding proteins by affinity chromatography, Biochem. J. 231: 233–236.PubMedGoogle Scholar
  103. Miller, L. J., Schwarting, R., and Springer, T. A., 1986, Regulated expression of the Mac-1, LFA-1, p150,95 glycoprotein family during leukocyte differentiation, J. Immunol. 137: 2891–2900.PubMedGoogle Scholar
  104. Miller, L. J., Bainton, D. F., Borregard, N., and Springer, T. A., 1987, Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intra cellular vesicular compartment to the cell surface, J. Clin. Invest. 80: 535–544.PubMedCrossRefGoogle Scholar
  105. Mishra, G. C., Berton, M. T., Oliver, K. G., ‘Crammer, P. H., Uhr, J. W., and Vitetta, E. S., 1986, A monoclonal anti-mouse LFA-1 alpha antibody mimics the biological effects of B cell stimulatory factor-1 (BSF-1), J. Immunol. 137: 1590–1598.PubMedGoogle Scholar
  106. Most, J., Neumayer, H. P., and Dierich, M. P., 1990, Cytokine-induced generation of multinucleated giant cells in vitro requires interferon-y and expression of LFA-1, Eur. J. Immunol. 20: 1661–1667.PubMedCrossRefGoogle Scholar
  107. Mourad, W., Geha, R. S., and Chaula, T., 1990, Engagement of major histocompatability complex class II molecules induces a sustained, lymphocyte function-associated molecule 1-dependent cell adhesion, J. Exp. Med. 172: 1513–1516.PubMedCrossRefGoogle Scholar
  108. Myones, B. L., Dalzell, J. G., Hogg, N., and Ross, G. D., 1988, Neutrophil and monocyte cell surface p 150,95 has iC3b-receptor activity resembling CR3, J. Clin. Invest. 82: 640–651.PubMedCrossRefGoogle Scholar
  109. Nathan, C., and Sanchez, E., 1990, Tumour necrosis factor and CD I 1 /CD 18 (beta2) integrins act synergistically to lower cAMP in human neutrophils, J. Cell Biol. 111: 2171–2181.PubMedCrossRefGoogle Scholar
  110. Nathan, C., Farber, C., Sanchez, E., Kabbash, L., Asch, A., Gailit, J., and Wright, S. D., 1989, Cytokine-induced respiratory burst of human neutrophils: Dependence on extracellular matrix proteins and CD11/CD18 integrins, J. Cell Biol. 109: 1341–1349.PubMedCrossRefGoogle Scholar
  111. Nauseef, W. M., de Alarcon, P., Bale, J. F., and Clark, R. A., 1986, Aberrant activation and regulation of the oxidative burst in neutrophils with Mol glycoprotein deficiency, J. Immunol. 137: 636–642.PubMedGoogle Scholar
  112. Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S., and Yamada, K. M., 1988, Electron microscopy and structural model of the fibronectin receptor, EMBO J. 7: 4093–4099.PubMedGoogle Scholar
  113. Osborn, L., 1990, Leukocyte adhesion to endothelium in inflammation, Cell 62: 3–6.PubMedCrossRefGoogle Scholar
  114. Otey, C. A., Pavalko, F. M., and Burridge, K., 1990, An interaction between alpha-actinin and the ßl integrin subunit in vitro, J. Cell Biol. 111: 721–729.PubMedCrossRefGoogle Scholar
  115. Pardi, R., Bender, J. R., Dettori, C., Giannazza, E., and Engleman, E. G., 1989, Heterogeneous distribution and transmembrane signalling properties of lymphocyte function-associated antigen (LFA-1) in human lymphocyte subsets, J. Immunol. 143: 3157–3166.PubMedGoogle Scholar
  116. Phillips, M. L., Nudelman, E., Gaeta, F. C. A., Perez, M., Singhal, A. K., Hakomori, S.-I., and Paulson, J. C., 1990, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl Le’, Science 250: 1130–1135.PubMedCrossRefGoogle Scholar
  117. Plaut, M., Bubbers, J. E., and Henney, C. S., 1976, Studies on the mechanism of lymphocyte-mediated cytolysis, J. Immunol. 116: 150–155.PubMedGoogle Scholar
  118. Ross, G. D., 1980, Analysis of the different types of leukocyte membrane complement receptors and their interaction with the complement system, J. Immunol. Methods 37: 197–211.PubMedCrossRefGoogle Scholar
  119. Rothlein, R., and Springer, T. A., 1986, The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester, J. Exp. Med. 163: 1132–1149.PubMedCrossRefGoogle Scholar
  120. Rothlein, R., Dustin, M. L., Marlin, S. D., and Springer, T. A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1, J. Immunol. 137: 1270–1274.PubMedGoogle Scholar
  121. Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 23: 491–497.CrossRefGoogle Scholar
  122. Sanchez-Madrid, F., Nagy, J. A., Robbins, E., Simon, P., and Springer, T. A., 1983, A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit, J. Exp. Med. 158: 1785–1803.PubMedCrossRefGoogle Scholar
  123. Sanders, M. E., Makgoba, M. W., Sharrow, S. O., Stephany, D., Springer, T. A., Young, H. A., and Shaw, S., 1988, Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2 and LFA-1) and three other molecules (UCHL1, CDw29, and pgp-1) and have enhanced IFN-gamma production, J. Immunol. 140: 1401–1407.PubMedGoogle Scholar
  124. Simmons, D., Makgoba, M. W., and Seed, B., 1988, ICAM-1, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM, Nature (London) 331: 624–627.CrossRefGoogle Scholar
  125. Skubitz, K. M., and Snook, R. W., 1987, Monoclonal antibodies that recognize lacto-N-fucopentaose III (CD15) react with the adhesion promoting glycoprotein family (LFA-1/HMAC-1/GP150,95) and CR1 on human neutrophils, J. Immunol. 139: 1631–1639.PubMedGoogle Scholar
  126. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83: 2008–2017.PubMedCrossRefGoogle Scholar
  127. Smith, J. W., and Cheresh, D. A., 1988, The arg-gly-asp binding domain of the vitronectin receptor, J. Biol. Chem. 263: 18726–18731.PubMedGoogle Scholar
  128. Smith, J. W., and Cheresh, D. A., 1990, Integrin (a03)-ligand interaction: Identification of a heterodimeric RGD binding site on the vitronectin receptor, J. Biol. Chem. 265: 2168–2172.PubMedGoogle Scholar
  129. Springer, T. A., 1990, Adhesion receptors of the immune system, Nature (London) 346: 425–434.CrossRefGoogle Scholar
  130. Springer, T. A., Galfre, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage differentiation antigen identified by a monoclonal antibody, Eur. J. Immunol. 9: 301–306.PubMedCrossRefGoogle Scholar
  131. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalsteig, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis, J. Exp. Med. 160: 1901–1918.PubMedCrossRefGoogle Scholar
  132. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein la-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen, J. Cell Biol. 108: 1917–1924.PubMedCrossRefGoogle Scholar
  133. Staunton, D. E., Dustin, M. L., and Springer, T. A., 1989, Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1, Nature (London) 339: 61–64.CrossRefGoogle Scholar
  134. Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A., 1990, The arrangement of the immunoglobulin-like domains of ICAM- 1 and the binding sites for LFA- I and rhinovirus, Cell 61: 243–254.PubMedCrossRefGoogle Scholar
  135. Stoolman, L. M., 1989, Adhesion molecules controlling lymphocyte migration, Ce!! 56: 907–910.Google Scholar
  136. Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., and Ruoslahti, E., 1986, cDNA and amino acid sequences of the cell adhesion protein receptor recognising vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors, Proc. Natl. Acad. Sci. USA 83: 8614–8618.Google Scholar
  137. Takeda, A., 1987, Sialylation patterns of lymphocyte function-associated antigen 1 (LFA-1) differ between T and B lymphocytes, Eur. J. Immunol. 17: 281–286.PubMedCrossRefGoogle Scholar
  138. Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F., and Hynes, R. O., 1986, Structure of integrin, a glycoprotein involved in transmembrane linkage between fibronectin and actin, Cell 46: 271–282.PubMedCrossRefGoogle Scholar
  139. Todd, R. F., Nadler, L. M., and Schlossmann, S. F., 1982, Antigens on human monocytes defined by monoclonal antibodies, J. Immunol. 126: 1435–1442.Google Scholar
  140. Todd, R. F., III, Arnaout, M. A., Rosin, R. E., Crowley, C. A., Peters, W. A., and Babior, B. M., 1984, Subcellular localization of the large subunit of Mol (Mola; formerly gpl 10), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74: 1280–1290.PubMedCrossRefGoogle Scholar
  141. Trowbridge, I. S., and Omary, M. B., 1981, Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac-1, J. Exp. Med. 154: 1517–1524.PubMedCrossRefGoogle Scholar
  142. Valentin, A., Lundin, K., Patarroyo, M., and Asjo, B., 1990, The leukocyte adhesion glycoprotein CD18 participates in the HIV-1-induced syncytia formation in monocytoid and T cells, J. Immunol. 144: 934–937.PubMedGoogle Scholar
  143. van Kooyk, Y., van de Weil-van Kemenade, P., Weder, P., Kuijpers, T. W., and Figdor, C. G., 1989, Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes, Nature (London) 342: 811–813.CrossRefGoogle Scholar
  144. van Kooyk, Y., Weder, P., Hogervorst, F., Verhoeven, A. J., van Seventer, G., to Velde, A. A., Borst, J., Keizer, G. D., and Figdor, C. G., 1991, Activation of LFA-1 through a Cat+-dependent epitope stimulates lymphocyte adhesion, J. Cell Biol. 112: 1345–1354.Google Scholar
  145. van Noesel, C., Miedema, F., Brouwer, M., de Rie, M. A., Aarden, L. A., and van Lier, R. A. W., 1988, Regulatory properties of LFA-1 alpha and beta chains in human T-lymphocyte activation, Nature (London) 333: 850–852.CrossRefGoogle Scholar
  146. van Seventer, G. A., Shimizu, Y., Horgan, K. J., and Shaw, S., 1990, The LFA-1 ligand ICAM-1 provides an important co-stimulatory signal for T cell receptor-mediated activation of resting T cells, J. Immunol. 144: 4579–4586.PubMedGoogle Scholar
  147. Vedder, N. B., and Harlan, J. M., 1988, Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to endothelium, J. Clin. Invest. 81: 676–682.PubMedCrossRefGoogle Scholar
  148. Vyas, N. K., Vyas, M. N., and Quiocho, F. A., 1987, A novel calcium binding site in the galactose binding protein of bacterial transport and chemotaxis, Nature (London) 327: 635–638.CrossRefGoogle Scholar
  149. Wacholtz, M. C., Patel, S. S., and Lipsky, P. E., 1989, Leukocyte function-associated antigen 1 is an activation molecule for human T cells, J. Exp. Med. 170: 431–448.PubMedCrossRefGoogle Scholar
  150. Wallis, W. J., Beatty, P. G., Ochs, H. D., and Harlan, J. M., 1985, Human monocyte adherence to cultured vascular endothelium: Monoclonal antibody-defined mechanisms, J. Immunol. 135: 2323–2330.PubMedGoogle Scholar
  151. Wardlaw, A. J., Hibbs, M. L., Stacker, S. A., and Springer, T. A., 1990, Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates, J. Exp. Med. 172: 335–345.PubMedCrossRefGoogle Scholar
  152. Williams, A. F., and Barclay, A. N., 1988, The immunoglobulin superfamily—domains for cell surface recognition, Annu. Rev. Immunol. 6: 381–405.PubMedCrossRefGoogle Scholar
  153. Wilson, J. M., Ping, A. J., Krauss, J. C., Mayo-Bond, L., Rogers, C. E., Anderson, D. C., and Todd, R. F., 1990, Correction of CD 18-deficient lymphocytes by retrovirus-mediated gene transfer, Science 248: 1413–1416.PubMedCrossRefGoogle Scholar
  154. Wright, S. D., and Meyer, B. C., 1986, Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes, J. Immunol. 136: 1759–1764.PubMedGoogle Scholar
  155. Wright, S. D., and Silverstein, S. C., 1982, Tumour-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 156: 1149–1164.Google Scholar
  156. Wright, S. D., Rao, P. E., van Voorhis, W. C., Craigmyle, L. S., lida, K., Talle, M. A., Westberg, E. F., Goldstein, G., and Silverstein, S. C., 1983, Identification of the C3bi receptor on human monocytes and macrophages by using monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 5699–5703.PubMedCrossRefGoogle Scholar
  157. Wright, S. D., Licht, M. R., Craigmyle, L. S., and Silverstein, S. C., 1984, Communication between receptors for different ligands on a single cell: Ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes, J. Cell Biol. 99: 336–339.PubMedCrossRefGoogle Scholar
  158. Wright, S. D., Detmers, P. A., Jong, M. T. C., and Meyer, B. C., 1986, Interferon-gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin, J. Exp. Med. 163: 1245–1259.PubMedCrossRefGoogle Scholar
  159. Wright, S. D., Weitz, J. I., Huang, A. J., Levin, S. M., Silverstein, S. C., and Loike, J. D., 1988, Complement receptor type three (CD l 1 b/CD 18) of human polymorphonuclear leukocytes recognizes fibrinogen, Proc. Natl. Acad. Sci. USA 85: 7734–7738.PubMedCrossRefGoogle Scholar
  160. Wright, S. D., Levin, S. M., Jong, M. T. C., Chad, Z., and Kabbash, L. G., 1989, VR3 (CD1lb/CD18) expresses one binding site for Arg-Gly-Asp containing peptides and a second site for bacterial lipopolysaccharide, J. Exp. Med. 169: 175–183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ian Dransfield
    • 1
  1. 1.Department of Respiratory MedicineCity HospitalEdinburghUK

Personalised recommendations