Biologically Active Polyphosphate and Polyphosphonate Esters — Nucleic Acid Analogs

  • Charles E. CarraherJr.
  • Daniel S. Powers
  • Bhoomin Pandya

Abstract

A number of polyphosphate and polyphosphonate esters derived from biologically active diols were synthesized. The diols included androstendiol, amcinafal, dienestrol, 5-iodo2-deoxyuridine and diethylstilbestrol. The products showed a wide range of activities towards the bacteria tested and generally decent to good activity towards the cancer cell lines tested.

Keywords

Normal Flora Weight Average Molecular Weight Baby Hamster Kidney DMSO Control Alcaligenes Faecalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Arvin, U.S. Patent 2,058, 394 (1936).Google Scholar
  2. 2.
    H. Zentfman and H. R. Wright, Br. Plastics, 25, 374 (1952).Google Scholar
  3. 3.
    M. Sander and E. Steininger, J. Macrol. Sci., Cl, 91 (1967).Google Scholar
  4. 4.
    a) P. W. Morgan, “Condensation Polymers: By Interfacial and Solution Methods, Wiley, New York, 1965. (b) Vol. II, Dekker, New York, 1978. (c) C. Carraher and J. Preston, “Interfacial Synthesis, Vol. III, Dekker, New York, 1982.Google Scholar
  5. 5.
    Y. L. Gefter, “Organophosphorus Monomers and Polymers, Pergamon New York, 1962.Google Scholar
  6. 6.
    C. Carraher, Inorganic Macromolecules Revs., 1, 271 (1972).Google Scholar
  7. 7.
    C. Carraher, in: “Interfacial Synthesis, Vol. II, F. Millich and C. Carraher, Eds., Dekker, New York, 1978, Chapter 20.Google Scholar
  8. 8.
    E. Aufderhaar, Dissertation, Bonn (1961).Google Scholar
  9. 9.
    E. V. Kuznetsov, I. M. Shermergorn and V. A. Belyaeva, U.S.S.R. Patent 137, 673 (1961).Google Scholar
  10. 10.
    T. Rabek and T. Prot, Roczniki Chem., 37, 747 (1963).Google Scholar
  11. 11.
    C. Carraher and G, Scherubel, Makromol. Chemie., 160, 259 (1972) and 152, 61 (1972).CrossRefGoogle Scholar
  12. 12.
    C. Carraher, Inorganic Macromolecules Revs., 1, 287 (1972) and C. Carraher, D. Powers and B. Pandya, Polymer Materials-Sci. & Eng., 65, 32 (1991).Google Scholar
  13. 13.
    C. Carraher and S. Bajah, Polymer, 15, 9 (1974).CrossRefGoogle Scholar
  14. 14.
    C. Carraher, M. Naas, D. Giron and D. R. Cerutis, J. Macromol. Sci-Chem., A19, 1101 (1983).CrossRefGoogle Scholar
  15. 15.
    C. Carraher and C. Deremo-Reese, in: “Metallorganic Polymers, C. Carraher, J. Sheets and C. Pittman, Eds., MER Press, Moscow, 1981, Chapter 10, p. 115.Google Scholar
  16. 16.
    C. Carraher, J. Chem. Ed., 58, C111, 921 (1981).Google Scholar
  17. 17.
    C. Carraher and S. Bajah, British Polymer J., 7, 155 (1975).CrossRefGoogle Scholar
  18. 18.
    J. W. Long, M. D., “The Essential Guide to Prescription Drugs, Harper and Row, New York, 1980, p. 221–227.Google Scholar
  19. 19.
    Teen, 28 52–54 (1984).Google Scholar
  20. 20.
    D. Silburt, MaCleans, 97, 58 (1984).Google Scholar
  21. 21.
    A. Albert, Selective Toxicity, 5th ed., Chapman and Hall, London, 1973Google Scholar
  22. 22.
    E. M. Hodnett and J. Tien Hai Tai, J. Med. Chem., 17, 1335 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    E. M. Hodnett, Polymer News, 8, 323–328 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Charles E. CarraherJr.
  • Daniel S. Powers
    • 1
    • 2
  • Bhoomin Pandya
    • 1
    • 2
  1. 1.Department of ChemistryFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of ChemistryWright State UniversityDaytonUSA

Personalised recommendations