Analysis of Ligand Binding and Cross-Linking of Receptors in Solution and on Cell Surfaces
Abstract
Fluorescence measurements are among the most powerful methods for investigating structure and structural changes on cell surfaces. The basic strength of this method is that nanomolar concentrations of fluorophores can be detected in the presence of a high level of background noise provided by the cells. An ideal fluorescent probe absorbs and emits at wavelengths not in common with the cellular components, has a high quantum yield, and can be placed specifically into a location such that it is sensitive to the structural aspect of interest. Recently there has been a great expansion in the commercial availability of fluorescent probes with a broad range of fluorescent properties and reactive groups for conjugation (e.g., Haugland, 1989). The requirement for specific placement on a macromolecular/cellular complex remains the most challenging experimentally. In this regard, specific ligands and specific monoclonal antibodies that can be fluorescently modified are valuable reagents. In this chapter we describe our use of quantitative fluorescence measurements to investigate the binding properties of cell surface receptors.
Keywords
Ligand Binding Forward Rate Constant Bivalent Ligand Multivalent Ligand Fluorescein FluorescencePreview
Unable to display preview. Download preview PDF.
References
- Baird, B., and Holowka, D., 1988, in Spectroscopic Membrane Probes (L. Loew, ed.), CRC Press, Boca Raton, pp. 93–116.Google Scholar
- Baird, B., Erickson, J., Goldstein, B., Kane, P., Menon, A. K., Robertson, D., and Holowka, D., 1988, in Theoretical Immunology (A. Perelson, ed.), Addison-Wesley, Reading, Mass., pp. 41–59.Google Scholar
- Barsumian, E. L., Isersky, C., Petrino, M. G., and Siraganian, R. P., 1981, Eur. J. Immunol. 11:317–323.PubMedCrossRefGoogle Scholar
- Berg, H. C., and Purcell, E. M., 1977, Biophys. J. 20:193–219.PubMedCrossRefGoogle Scholar
- Carson, D., and Metzger, H., 1974, Immunochemistry 11:355–359.PubMedCrossRefGoogle Scholar
- Dembo, M., and Goldstein, B., 1978a, Immunochemistry 15:307–313.PubMedCrossRefGoogle Scholar
- Dembo, M., and Goldstein, B., 1978b, J. Immunol. 121:345–353.PubMedGoogle Scholar
- Dembo, M., Goldstein, B., Sobotka, A. K., and Lichtenstein, L. M., 1979, J. Immunol. 123:1864–1871.PubMedGoogle Scholar
- Eisen, H., and McGuigan, J., 1968, in Methods in Immunology and Immunochemistry (W. C. Williams and M. Chase, eds.), Academic Press, New York.Google Scholar
- Erickson, J. W., 1988, Equilibrium and kinetic studies of a model ligand-receptor system: Monovalent and bivalent ligand interactions with immunoglobulin E, Ph.D. thesis, Cornell University.Google Scholar
- Erickson, J., Kane, P., Goldstein, B., Holowka, D., and Baird, B., 1986, Mol. Immunol. 23:769–780.PubMedCrossRefGoogle Scholar
- Erickson, J., Goldstein, B., Holowka, D., and Baird, B., 1987, Biophys. J. 52:657–662.PubMedCrossRefGoogle Scholar
- Estes, K., Monfalcone, L., Hammes, S., Holowka, D., and Baird, B., 1987, J. Cell Biol. 105:747–755.PubMedCrossRefGoogle Scholar
- Fewtrell, C., 1985, in Calcium in Biological Systems (G. Weiss, J. Putney, and R. Rubin, eds.), Plenum Press, New York, pp. 129–136.CrossRefGoogle Scholar
- Fewtrell, C., Kessler, A., and Metzger, H., 1979, Adv. Inflam. Res. 1:205–221.Google Scholar
- Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y.Google Scholar
- Goldstein, B., Posner, R. G., Torney, D. C., Erickson, J., Holowka, D., and Baird, B., 1989, Biophys. J. 56:955–966.PubMedCrossRefGoogle Scholar
- Haugland, R. P., 1989, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, Ore.Google Scholar
- Holowka, D., and Baird, B., 1983, Biochemistry 22:3466–3474.PubMedCrossRefGoogle Scholar
- Ishizaka, T., Hirata, F., Ishizaka, K., and Axelrod, J., 1981, in Biochemistry of the Acute Allergic Reactions (E. Becker, A. Simon, and K. Austen, eds.), Liss, New York, pp. 213–227.Google Scholar
- Isersky, C., Rivera, J., Mims, S., and Triche, T., 1979, J. Immunol. 122:1926–1936.PubMedGoogle Scholar
- Kane, P., Erickson, J., Fewtrell, C., Baird, B., and Holowka, D., 1986, Mol. Immunol. 23:783–790.PubMedCrossRefGoogle Scholar
- Kane, P., Holowka, D., and Baird, B., 1988, J. Cell Biol. 107:969–980.PubMedCrossRefGoogle Scholar
- Liu, F. T., Bohn, J. W., Ferry, E. L., Yamamoto, H., Molinaro, C. A., Sherman, L. A., Klinman, N. R., and Katz, D., 1980, J. Immunol. 124:2728–2735.PubMedGoogle Scholar
- Menon, A. K., Holowka, D., and Baird, B., 1984, J. Cell Biol. 9:577–583.CrossRefGoogle Scholar
- Menon, A. K., Holowka, D., Webb, W. W., and Baird, B., 1986a, J. Cell Biol. 102:534–540.PubMedCrossRefGoogle Scholar
- Menon, A. K., Holowka, D., Webb, W. W., and Baird, B., 1986b, J. Cell Biol. 102:541–550.PubMedCrossRefGoogle Scholar
- Metzger, H., Alcaraz, G., Hohman, R., Kinet, J.-P., Pribluda, V., and Quarto, R., 1986, Annu. Rev. Immunol. 4:419–470.PubMedCrossRefGoogle Scholar
- Pecht, I., and Lancet, D., 1977, in Chemical Relaxation in Molecular Biology (I. Pecht and R. Rigler, eds.), Springer-Verlag, Berlin, pp. 306–338.CrossRefGoogle Scholar
- Perelson, A., and DeLisi, C., 1980, Math. Biosci. 48:71–110.CrossRefGoogle Scholar
- Robertson, D., Holowka, D., and Baird, B., 1986, J. Immunol. 136:4565–4572.PubMedGoogle Scholar
- Schweitzer-Stenner, R., Light, A., Luscher, I., and Pecht, I., 1987, Biochemistry 26:3602–3612.PubMedCrossRefGoogle Scholar