Biochemistry and Oncology of Sialoglycoproteins

  • Veer P. Bhavanandan
  • Kiyoshi Furukawa

Abstract

Sialoglycoproteins are defined as proteins containing one or more sialyl oligosaccharides covalently bound via their reducing end to the polypeptide chain. Most, but not all, of the glycosylated proteins in animals contain sialic acid and therefore qualify as sialoglycoproteins. Some examples of glycoproteins lacking sialic acid are ovalbumin, ribonuclease, and antifreeze glycoprotein. Sialoglycoproteins are ubiquitous in animals, either as components of cellular membranes of extracellular fluids such as serum, spinal fluid, saliva, respiratory mucous, gastric juice, sweat, and semen. The intrinsic membrane glycoproteins of the cell have their carbohydrate moieties usually projecting into the cytoplasm, or in the case of the plasma membrane, the exterior of the cell. The cell membrane sialoglycoproteins and sialoglycolipids (gangliosides) enrich the cell surface in sialyl residues which are important determinants in the social behavior of the cell.

Keywords

Sialic Acid Sugar Chain Baby Hamster Kidney Cell GlcNAc Residue Mucin Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeijon, C., and Hirschberg, C. B., 1987, Subcellular site of synthesis of the N-acetylgalactosamine (αl→0) serine (or threonine) linkage in rat liver, J. Biol. Chem. 262: 4153–4159.PubMedGoogle Scholar
  2. Abercrombie, M., and Ambrose, E. J., 1962, The surface properties of cancer cells: A review, Cancer Res. 22: 525–548.PubMedGoogle Scholar
  3. Akiyama, S. K., Yamada, S. S., and Yamada, K. M., 1989, Analysis of the role of glycosylation of the human fibronectin receptor, J. Biol. Chem. 264: 18011–18018.PubMedGoogle Scholar
  4. Allen, A., 1983, Mucus—A protective secretion of complexity, Trends Biochem. Sci. 8: 169–173.Google Scholar
  5. Altevogt, P., Fogel, M., Cheingsong-Popov, R., Dennis, J. W., Robinson, P., and Schirrmacher, V., 1983, Different patterns of lectin binding and cell surface sialylation detected on related high- and low-metastatic tumor lines, Cancer Res. 43: 5138–5144.PubMedGoogle Scholar
  6. Asada, M., Furukawa, K., Kantor, C., Gahmberg, C. G., and Kobata, A., 1991, Structural study of the sugar chains of human leukocyte cell adhesion molecules CD11/CD18, Biochemistry 30: 1561–1571.PubMedGoogle Scholar
  7. Asada, M., Furukawa, K., Segawa, K., and Kobata, A., 1992, Biological significance of altered glycosylation of the cell surface glycoproteins in the transformed cells, Cell Struct. Funct. 17: 477 (Abstract).Google Scholar
  8. Ashall, F., Bramwall, M. E., and Hanis, H., 1982, A new marker for human cancer cells. 1. The Ca antigen and the Cal antibody, Lancet 7: 1–6.Google Scholar
  9. Ater, J. L., Gooch, W. M., Bybee, B. L., and O’Brien, R. T., 1984, Poor prognosis for mucinproducing Wilms’ tumor, Cancer 53: 319–323.PubMedGoogle Scholar
  10. Aubert, J., Biserte, G., and Loucheux-Lefebvre, M. H., 1976, Carbohydrate–peptide linkage in glycoproteins, Arch. Biochem. Biophys. 175: 410–418.PubMedGoogle Scholar
  11. Bardales, R., Bhavanandan, V. P., Wiseman, G., and Bramwell, M. E., 1989, Purification and characterization of the epitectin from human laryngeal carcinoma cells, J. Biol. Chem. 264: 1980–1987.PubMedGoogle Scholar
  12. Build, D. L., Lan, M. S., Metzgar, R. S., and Finn, O. K., 1989, Specific major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells, Proc. Natl. Acad. Sci. USA 86: 7159–7163.Google Scholar
  13. Barsoum, A. L., and Bhavanandan, V. P., 1989, Detection of glycophorin A-like glycoproteins on the surface of cultured human cells, Int. J. Biochem. 21: 635–654.PubMedGoogle Scholar
  14. Barsoum, A. L., Czuczman, M., Bhavanandan, V. P., and Davidson, E. A., 1984, Epitopes immunologically related to glycophorin A on human malignant and nonmalignant cells in culture, Int. J. Cancer 34: 789–795.PubMedGoogle Scholar
  15. Barsoum, A. L., Bhavanandan, V. P., and Davidson, E. A., 1985, Monoclonal antibodies to cyanogen bromide fragments of glycophorin A, Mol. Immunol. 22: 361–367.PubMedGoogle Scholar
  16. Bevilacqua, M. P., and Nelson, R. M., 1993, Selectins, J. Clin. Invest. 91: 379–287.PubMedGoogle Scholar
  17. Bevins, C. L., and Zasloff, M. A., 1990, Peptides from frog skin, Annu. Rev. Biochem. 59: 395–414.PubMedGoogle Scholar
  18. Beyer, T. A., and Hill, R. L., 1982, Glycosylation pathways in the biosynthesis of nonreducing terminal sequences in oligosaccharides of glycoproteins, in: The Glycoconjugates, III ( M. I. Horowitz, ed.), Academic Press, New York, pp. 25–45.Google Scholar
  19. Bharathan, S., Moriarty, J., Moody, C. E., and Sherblom, A. P., 1990, Effect of tunicamycin on sialomucin and natural killer susceptibility of rat mammary tumor ascites cells. Cancer Res. 50: 5250–5256.PubMedGoogle Scholar
  20. Bhargava, A. K., Woitach, J. J., Davidson, E. A., and Bhavanandan, V. P., 1990, Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains, Proc. Natl. Acad. Sci. USA 87: 6798–6802.PubMedGoogle Scholar
  21. Bhaskar, K. R., Garik, P., Turner, B. S., Bradley, J. D., Bansil, R., Stanley, H. E., and Lamont, J. T., 1992, Viscous fingering of HC1 through gastric mucin, Nature 360: 458–462.PubMedGoogle Scholar
  22. Bhavanandan, V. P., 1991, Cancer-associated mucins and mucin-type glycoproteins, Glycobiology 1: 493–503.PubMedGoogle Scholar
  23. Bhavanandan, V. P., and Hegarty, J. D., 1987, Identification of the mucin core protein by cell-free translation of messenger RNA from bovine submaxillary glands, J. Biol. Chem. 262: 5913–5917.PubMedGoogle Scholar
  24. Bhavanandan, V. P., and Katlic, A. W., 1979, The interaction of wheat germ agglutinin with sialoglycoproteins; The role of sialic acid, J. Biol. Chem. 254: 4000–4008.PubMedGoogle Scholar
  25. Bhavanandan, V. P., and Meyer, K., 1966, Mucopolysaccharides: N-acetyl glucosamine-and galactose-6 sulfates from keratosulfate, Science 151: 1404–1405.PubMedGoogle Scholar
  26. Bhavanandan, V. P., Umemoto, J., Banks, J. R., and Davidson, E. A., 1977, Isolation and partial characterization of sialoglycopeptides produced by a murine melanoma, Biochemistry 16: 4426–4437.PubMedGoogle Scholar
  27. Bhavanandan, V. P., Katlic, A. W., Banks, J., Kemper, J. G., and Davidson, E. A., 1981, Partial characterization of sialoglycopeptides produced by cultured human melanoma cells and melanocytes, Biochemistry 20: 5586–5594.PubMedGoogle Scholar
  28. Bierhuizen, M.F.A., and Fukuda, M., 1993, 13–1,6-N-acetylglucosaminyl transferases: Enzymes critically involved in oligosaccharide branching, Trends in Glycoscience and Glycotechnology 6: 17–28.Google Scholar
  29. Bobek, L. A., Tsai, H., Biesbrock, A. R., and Levine, M. J., 1993, Molecular cloning, sequence and specificity of expression of the gene encoding the low molecular weight human salivary mucin (Muc7), J. Biol. Chem. 268: 20563–20569.PubMedGoogle Scholar
  30. Bramwell, M. E., Bhavanandan, V. P., Wiseman, G., and Harris, H., 1983, Structure and function of the Ca antigen, Br. J. Cancer 48: 177–183.PubMedGoogle Scholar
  31. Bramwell, M. E., Wiseman, G., and Shotton, D. M., 1986, Electron-microscopic studies of the Ca antigen, epitectin, J. Cell Sci. 86: 249–261.PubMedGoogle Scholar
  32. Bresalier, R. S., Niv, Y., Byrd, J. C., Duh, Q., Toribara, N. W., Rockwell, R. W., Dahiya, R., and Kim, Y. S., 1991, Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis, J. Clin. Invest. 87: 1037–1045.PubMedGoogle Scholar
  33. Briand, J. P., Andrews, S. P., Cahill, E., Conway, N. A., and Young, J. D., 1981, Investigation of the requirements for 0-glycosylation by bovine submaxillary gland UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosamine transferase using synthetic peptide substrates, J. Biol. Chem. 256: 12205–12207.PubMedGoogle Scholar
  34. Brockhausen, I., Matta, K. L., On, J., and Schachter, H., 1985, Mucin synthesis. UDP-G1cNAc: GalNAc-Rß 3-N-acetylglucosaminyltransferase and UDP-G1cNAc:GIcNAc(31—s3GaINAc-R (G1cNAc to GaINAc) 136-N-acetyl glucosaminyltransferase from pig and rat colon mucosa, Biochemistry 24: 1866–1860.PubMedGoogle Scholar
  35. Brockhausen, I., Kuhns, W., Schachter, H., Matta, K. L., Sutherland, D. R., and Baker, M. A., 1991, Biosynthesis of 0-glycans in leukocytes from normal donors and from patients with leukemia: Increase in 0-glycan core 2 UDP-G1cNAc: Gal133-+GaINAcR (GIcNAc to GaINAc) 13(1—*6)-N-acetyl glucosaminyltransferase in leukemic cells, Cancer Res. 51: 1257–1263.PubMedGoogle Scholar
  36. Burchell, J., Gendler, S., Taylor-Papadimitriou, J., Girling, A., Lewis, A., Millis, R., and Lamport, D., 1987, Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin, Cancer Res. 47: 5476–5482.PubMedGoogle Scholar
  37. Burchell, J., Papadimitriou, J. T., Boshell, M., Gendler, S., and Duhig, T., 1989, A short sequence, within the amino acid tandem repeat of a cancer-associated mucin, contains immunodominant epitopes, Int. J. Cancer 44: 691–696.PubMedGoogle Scholar
  38. Carlsson, S. R., and Fukuda, M., 1992, The lysosomal membrane glycoprotein lamp- I is transported to lysosomes by two alternative pathways, Arch. Biochem. Biophys. 296: 630–639.PubMedGoogle Scholar
  39. Carraway, K. L., and Spielman, J., 1986, Structural and functional aspects of tumor cell sialomucins, Mol. Cell. Biochem. 72: 109–120.PubMedGoogle Scholar
  40. Carraway, K. L., Fregien, N., Carraway, K. L., III, and Carraway, C.A.C., 1992, Tumor sialomucin complexes as tumor antigens and modulators of cellular interactions and proliferation, J. Cell Sci. 103: 299–307.PubMedGoogle Scholar
  41. Cartron, J. P., and Rahuel, C., 1992, Human erythrocyte glycophorins: Protein and gene structure analysis, Transfus. Med. Rev. 11: 63–92.Google Scholar
  42. Ceriani, R. L., Peterson, J. A., Leo, J. Y., Moncada, R., and Blank, E. W., 1983, Characterization of cell surface antigens of human mammary epithelial cells with monoclonal antibodies prepared against human milk fat globule, Somat. Cell Genet. 9: 415–427.PubMedGoogle Scholar
  43. Chai, W., Hounsell, E. F., Cashmore, G. C., Rosaqnkiewicz, J. R., Bauer, C. J., Fenney, J., Feizi, T., and Lawson, A. M., 1992, Neutral oligosaccharides of bovine submaxxilary mucin, Eur. J. Biochem. 203: 257–268.PubMedGoogle Scholar
  44. Chandrasekaran, E. V., and Davidson, E. A., 1979, Sialoglycoproteins of human mammary cells: Partial characterization of sialoglycopeptides, Biochemistry 18: 5615–5620.PubMedGoogle Scholar
  45. Chen, J. W., Cha, Y., Yuksel, K. U., Gracy, R. W., and August, J. T., 1988, Isolation and sequencing of a cDNA clone encoding lysosomal membrane glycoprotein mouse LAMP-1, J. Biol. Chem. 263: 8754–8758.PubMedGoogle Scholar
  46. Codington, J. F., and Frim, D. M., 1983, Cell Surface macromolecular and morphological changes related to allotransplantability in the TA3 tumor, Biomembranes 11: 207–258.PubMedGoogle Scholar
  47. Codington, J. F., and Haavik, S., 1992, Epiglycanin—A carcinoma-specific mucin-type glycoprotein of the mouse TA3 tumor, Glycobiology 2: 173–180.PubMedGoogle Scholar
  48. Colcher, D., Horan, H. P., Nuti, M., and Schlom, J., 1981, A spectrum of monoclonal antibodies reactive with human mammary tumor cells, Proc. Natl. Acad. Sci. USA 78: 3199–3203.PubMedGoogle Scholar
  49. Crepin, M., Porchet, N., Aubert, J. P., and Degand, P., 1990, Diversity of the peptide moiety of human airway mucins, Biorheology 27: 471–484.PubMedGoogle Scholar
  50. Cummings, R. D., Trowbridge, I. S., and Kornfeld, S., 1982, A mouse lymphoma cell line resistant to the leukoagglutinating mannoside-ß1,6 N-acetylglucosaminyltransferase, J. Biol. Chem. 257: 13421–13427.PubMedGoogle Scholar
  51. Currie, G. A., Van Doorninck, W., and Bagshawe, K. D., 1968, Effect of neuraminidase on the immunogenicity of early mouse tropoblast, Nature 219: 191–192.PubMedGoogle Scholar
  52. Dekker, J., and Strous, G. J., 1990, Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation dependent, and precedes initial 0-glycosylation, J. Biol. Chem. 265: 18116–18122.PubMedGoogle Scholar
  53. Dekker, J., Aelmans, P. H., and Strous, G. J., 1991, The oligomeric structure of rat and human gastric mucins, Biochem. J. 277: 423–427.PubMedGoogle Scholar
  54. Dennis, J. W., Laferte, S., Fukuda, M., Dell, A., and Carver, J. P., 1986, Asn-linked oligosaccharides in lectin-resistant tumor-cell mutants with varying metastatic potential, Eur. J. Biochem. 161: 359–373.PubMedGoogle Scholar
  55. Dennis, J. W., Laferte, S., Waghorne, M. L., Breitman, M. L., and Kerbek, R. S., 1987, III-56 branching of Asn-linked oligosaccharides is directly associated with metastasis, Science 236: 582–585.PubMedGoogle Scholar
  56. Dilulio, N. A., Yamakami, K., Washington, S., and Bhavanandan, V. P., 1994, Effect of long-term culture of a human laryngeal carcinoma cell line on epitectin production and tumorigenicity in athymic mice, Gyycosylation Dis. 1: 21–30.Google Scholar
  57. Do, K.-Y., Smith, D. F., and Cummings, R. D., 1990, LAMP-1 in Cho cells is a primary carrier of poly-N-acetyllactosamine chains and is bound preferentially by a mammalian S-type lectin, Biochem. Biophys. Res. Commun. 173: 1123–1128.PubMedGoogle Scholar
  58. Dohi, D. F., Sutton, R. C., Frazier, M. L., Nakamori, S., Mclsaac, A. M., and Irimura, T., 1993, Regulation of sialomucin production in colon carcinoma cells, J. Biol. Chem. 268: 10133–10138.PubMedGoogle Scholar
  59. Dufosse, J., Porchet, N., Audie, J.-P., Duperat, V. G., Laine, A., Van-Seuningen, I., Marrakchi, S., Degand, P., and Aubert, J.-P., 1993, Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11p15, Biochem. J. 293: 329–337.PubMedGoogle Scholar
  60. Eckhardt, A. E., Timpte, C. S., Abernathy, J. L., Zhao, Y., and Hill, R. L., 1991, Porcine submaxillary mucin contains a cystine-rich, carboxylterminal domain in addition to a highly repetitive, glycosylated domain, J. Biol. Chem. 266: 9678–9687.PubMedGoogle Scholar
  61. Endo, T., Ohbayashi, H., Hayashi, Y., Ikehara, Y., Kochibe, N., and Kobata, A., 1988, Structural study on the carbohydrate moiety of human placental alkaline phosphatase, J. Biochem. 103: 182–187.PubMedGoogle Scholar
  62. Fiete, D., Srivastava, V., Hindsgaul, O., and Baenziger, J. U., 1991, A hepatic reticuloendothelial cell receptor specific for SO4-)GalNAc(31,4 GIcNA431,2 Mana that mediates rapid clearance of lutropin, Cell 67: 1103–1110.PubMedGoogle Scholar
  63. Finne, J., Tao, T. W., and Burger, M. M., 1980, Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone, Carbohydr. Res. 40: 2580–2587.Google Scholar
  64. Fukuda, M., 199la, Leukosialin, a major 0-glycan-containing sialoglycoprotein defining leukocyte differentiation and malignancy, Glycobiology 1: 347–356.Google Scholar
  65. Funakoshi, I., Nakada, H., and Yamashina, I., 1974, The isolation and characterization of glycopeptides from plasma membranes of an ascites hepatoma, AH 66, J. Biochem. 76: 319–333.PubMedGoogle Scholar
  66. Fung, P.Y.S., and Longenecker, B. M., 1991, Specific immunosuppressive activity of epiglycanin, a mucin-like glycoprotein secreted by a murine mammary adenocarcinoma (TA3-Ha), Cancer Res. 51: 1170–1176.PubMedGoogle Scholar
  67. Furukawa, K., and Kobata, A., 1992, Protein glycosylation, Curr. Opin. Biotechnol. 3: 554–559.PubMedGoogle Scholar
  68. Furukawa, K., Minor, J. E., Hegarty, J. D., and Bhavanandan, V. P., 1986, Interactions of sialoglycoproteins with wheat germ agglutinin-Sepharose of varying ratio of lectin to sepharose: Use for the purification of mucin glycoproteins from membrane extracts, J. Biol. Chem. 261: 7755–7761.PubMedGoogle Scholar
  69. Galili, U., Shohet, S. B., Kobrin, E., Stults, C. L., and Macher, B. A., 1988, Man, apes, and old world monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263: 17755–17762.PubMedGoogle Scholar
  70. Gendler, S. J., Lancaster, C. A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E., and Wilson, D., 1990, Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin, J. Biol. Chem. 265: 15286–15293.PubMedGoogle Scholar
  71. Gerken, T. A., Butenhof, K. J., and Shogren, R., 1989, Effects of glycosylation on the conformation and dynamics of 0-linked glycoproteins: Carbon-13 NMR studies of ovine submaxxilary mucin, Biochemistry 28: 5536–5543.PubMedGoogle Scholar
  72. Gottschalk, A., 1960, Correlation between composition, structure, shape and function of a salivary mucoprotein, Nature 186: 949–951.PubMedGoogle Scholar
  73. Gottschalk, A., and Thomas, M.A.W., 1961, Studies on mucoproteins. V. The significance of N-acetylneuraminic acid for the viscosity of ovine submaxillary gland glycoprotein, Biochim. Biophys. Acta 46: 91–98.PubMedGoogle Scholar
  74. Green, E. D., van Halbeek, H., Boime, I., and Baenziger, J. U., 1985, Structural elucidation of the disulfated oligosaccharide from bovine lutropin, J. Biol. Chem. 260: 15623–15630.PubMedGoogle Scholar
  75. Griffiths, B., Matthews, D. J., West, L., Attwood, J., Povey, S., Swallow, D. M., Gum, J. R., and Kim, Y. S., 1990, Assignment of the polymorphic intestinal mucin gene (Muc2) to chromosome-11p15, Ann. Hum. Genet. 54: 270–277.Google Scholar
  76. Gum, J. R., Byrd, J. C., Hicks, J. W., Toribara, N. W., Lamport, D.T.A., and Kim, Y. S., 1989, Molecular cloning of human intestinal mucin cDNA’s, J. Biol. Chem. 264: 6480–6487.PubMedGoogle Scholar
  77. Gum, J. R., Hicks, J. W., Swallow, D. M., Lagac, R. L., Byrd, J. C., Lamport, D.T.A., Siddiki, B., and Kim, Y. S., 1990, Molecular cloning of cDNAs from a novel human intestinal mucin gene, Biochem. Biophys. Res. Commun. 171: 407–415.PubMedGoogle Scholar
  78. Gum, J. R., Jr., Hicks, J. W., Toribara, N. W., Rothe, E.-M., Lagace, R. E., and Kim, Y. S., 1993, The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region, J. Biol. Chem. 267: 21375–21383.Google Scholar
  79. Hakomori, S., 1973, Glycolipids of tumor membranes, Adv. Cancer Res. 18: 265–315.PubMedGoogle Scholar
  80. Hakamori, S., 1984, Tumor-associated carbohydrate antigens, Annu. Rev. Immunol. 2: 103–126.Google Scholar
  81. Hakomori, S., 1989, Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens, Adv. Cancer Res. 52: 257–331.PubMedGoogle Scholar
  82. Hanisch, F., Pete-Katalinic, J., Egge, H., Dabrowski, U., and Uhlenbruck, G., 1990, Structures of acidic O-linked polylactosaminoglycans on human skim milk mucins, Glycoconjugate J. 7: 525–543.Google Scholar
  83. Hanski, C., Drechsler, K., Hanisch, F.-G., Sheehan, H., Manske, M., Ogorek, D., Klussmann, E., Hanski, M.-L., Blank, M., Xing, P.-X., McKenzie, I.F.C., Devine, P. L., and Riecken, E.-O., 1993, Altered glycosylation of the MUC-1 protein core contributes to the colon carcinoma-associated increase of mucin-bound sialyl-Lewis expression, Cancer Res. 53: 4082–4088.PubMedGoogle Scholar
  84. Hayes, D. F., Silberstein, D. S., Rodrigue, S. W., and Kufe, D. W., 1990, DF3 antigen, a human epithelial cell mucin, inhibits adhesion of eosinophils to antibody-coated targets, J. Immunol. 145: 960–962.Google Scholar
  85. Hession, C., Osborn, L., Goff, D., Chi-Rosso, G., Vassallo, C., Pasek, M., Pittack, C., Tizard, R., Goelz, S., McCarthy, K., Hopple, S., and Lobb, R., 1990, Endothelial leukocyte adhesion molecule 1: Direct expression cloning and functional interactions, Proc. Natl. Acad. Sci. USA 87: 1673–1677.PubMedGoogle Scholar
  86. Hilgers, J., Zotter, S., and Kenemans, P., 1989, Polymorphic epithelial mucin and CA 125-bearing glycoprotein in basic and applied carcinoma research, Cancer Rev. 1112: 3–10.Google Scholar
  87. Hilkens, J., 1988, Biochemistry and function of mucins in malignant disease, Cancer Rev. 1112: 25–54.Google Scholar
  88. Hilkens, J., and Buijs, F., 1988, Biosynthesis of Mam-6, an epithelial sialomucin, J. Biol. Chem. 263: 4215–4222.PubMedGoogle Scholar
  89. Hilkens, J., Ligtenberg, M.J.L., Vos, H. L., and Litvinov, S. V., 1992, Cell membrane associated mucins and adhesion-modulating property, Trends Biochem. Sci. 17: 359–363.PubMedGoogle Scholar
  90. Hill, H. D., Reynolds, J. A., and Hill, R. L., 1977a, Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin, J. Biol. Chem. 252: 3791–3798.PubMedGoogle Scholar
  91. Hill, H. D., Schwyzer, M., Steinman, H. M., and Hill, R. L., 1977b, Ovine submaxillary mucinPrimary structure and peptide substrates of UDP-N-acetylgalactosamine: Mucin transferase, J. Biol. Chem. 252: 3799–3804.PubMedGoogle Scholar
  92. Hiraizumi, S., Takasaki, S., Shiroki, K., Kochibe, N., and Kobata, A., 1990, Transfection with fragments of the adenovirus 12 gene induces tumorigenicity-associated alteration of N-linked sugar chains in rat cells, Arch. Biochem. Biophys. 280: 9–19.PubMedGoogle Scholar
  93. Hiraizumi, S., Takasaki, S., Ohuchi, N., Harada, Y., Nose, M., Shozo, M., and Kobata, A., 1992, Altered glycosylation of membrane glycoproteins associated with human mammary carcinoma, Jpn. J. Cancer Res. 83: 1063–1072.PubMedGoogle Scholar
  94. Hironaka, T., Furukawa, K., Esmon, P. C., Fournel, M. A., Sawada, S., Kata, M., Minaga, T., and Kobata, A., 1992, Comparative study of the sugar chains of factor Viii purified from human plasma and from the culture media of recombinant baby hamster kidney cells, J. Biol. Chem. 267: 8012–8020.PubMedGoogle Scholar
  95. Hoff, S. D., Matsushita, Y., Ota, D. M., Cleary, K. R., Yamori, T., Hakomori, S., and Irimura, T., 1989, Increased expression of sialyl-dimeric Le antigen in liver metastases of human colorectal carcinoma, Cancer Res. 49: 6883–6888.PubMedGoogle Scholar
  96. Hoffmann, W., 1988, A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide, J. Biol. Chem. 263: 7686–7690.PubMedGoogle Scholar
  97. Hull, S. R., Bright, A., Carraway, K. L., Abe, M., Hayes, D. F., and Kufe, D. W., 1989, Oligosaccharide difference in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line, Cancer Commun. 1: 261–267.PubMedGoogle Scholar
  98. Humphries, M. J., Matsumoto, K., White, S. L., and Olden, K., 1986, Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16–F10 murine melanoma cells, Proc. Natl. Acad. Sei. USA 83: 1752–1756.Google Scholar
  99. Ingram, G. A., 1980, Substances involved in the natural resistance of fish to infection: A review, J. Fish Biol. 16: 23–30.Google Scholar
  100. Irimura, T., Gonzalez, R., and Nicolson, G. L., 1981, Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties, Cancer Res. 41: 3411–3418.PubMedGoogle Scholar
  101. Irimura, T., Carlson, D. A., Price, J., Yamori, T., Giavazzi, R., Ota, D. M., and Cleary, K. R., 1988, Differential expression of a sialoglycoprotein with an approximate molecular weight of 900,000 on metastatic human colon carcinoma cells growing in culture and in tumor tissues, Cancer Res. 48: 2353–2360.PubMedGoogle Scholar
  102. Irimura, T., Mclsaac, A. M., Carlson, D. A., Yagita, M., Grimm, E. A., Menter, D. G., Ota, D. M., and Cleary, K. R., 1990, Soluble factor in normal tissues that stimulates high-molecular-weight sialoglycoprotein production by human colon carcinoma cells, Cancer Res. 50: 3331–3338.PubMedGoogle Scholar
  103. Irimura, T., Nakamori, S., Matsushita, Y., Taniuchi, Y., Todoroki, N., Tsuji, T., Izumi, Y., Kawamura, Y., Hoff, S. D., Cleary, K. R., and Ota, D. M., 1993, Colorectal cancer metastasis determined by carbohydrate-mediated cell adhesion: Role of sialyl-Lex antigens, Cancer Biol. 4: 319–324.Google Scholar
  104. Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S., and Kim, Y. S., 1990, A novel mucin antigen associated with prognosis in colorectal cancer patients, Cancer 66: 1960–1966.PubMedGoogle Scholar
  105. Jerome, K. R., Barnd, D. L., Bendt, K. M., Boyer, C. M., Taylor-Papadimitriou, J., McKenzie, I.F.C., Bast, R. C., and Finn, O. J., 1991, Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of mucin molecule preferentially expressed by malignant cells, Cancer Res. 51: 2908–2916.PubMedGoogle Scholar
  106. Johnson, D. C., and Spear, P. G., 1983, 0-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus, Cell 32: 987–999.Google Scholar
  107. Johnson, V. G., Schlom, J., Paterson, A. J., Bennett, J., Magnani, J. L., and Colcher, D., 1986, Analysis of a human tumor-associated glycoprotein (Tag-72) identified by monoclonal antibody B72.3, Cancer Res. 46: 850–857.PubMedGoogle Scholar
  108. Johnson, W. V., and Heath, E. C., 1986, Evidence for posttranslational 0-glycosylation of fetuin, Biochemistry 25: 5518–5525.PubMedGoogle Scholar
  109. Jokinen, M., Andersson, L. C., and Gahmberg, C. G., 1985, Biosynthesis of the major human red blood cell sialoglycoprotein, glycophorin A, J. Biol. Chem. 260: 11314–11321.PubMedGoogle Scholar
  110. Joziasse, D. H., Schiphorst, W.E.C.M., van den Eijnden, D. H., Van Kuik, J. A., Van Halbeek, H., and Vliegenthart, J.F.G., 1987, Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide a2–6 sialyltransferase, J. Biol. Chem. 262: 2025–2033.PubMedGoogle Scholar
  111. Joziasse, D. H., Shaper, J. H., van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L., 1989, Bovine al-3-galactosyltransferase: Isolation and characterization of a cDNA clone, J. Biol. Chem. 265: 14290–14297.Google Scholar
  112. Joziasse, D. H., Shaper, J. H., Jabs, E. W., and Shaper, N. L., 1991, Characterization of an al→3 galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene, J. Biol. Chem. 266: 6991–6998.PubMedGoogle Scholar
  113. Kaliner, M. A., 1991, Human nasal respiratory secretions and host defense, Am. Rev. Respir. Dis. 144: S52 - S56.PubMedGoogle Scholar
  114. Kawano, T., Takasaki, S., Tao, T.-W., and Kobata, A., 1993, Altered glycosylation of Rl integrins associated with reduced adhesiveness to fibronectin and laminin, Int. J. Cancer 53: 91–96.PubMedGoogle Scholar
  115. Kawashima, H., Yamamoto, K., Osawa, T., and Irimura, T., 1993, Purification and characterization of UDP-GIcNAc:Ga1131→4GIc(NAc) ßl,3-N-acetyl glucosaminyltransferase (poly-N-acetyllactosamine extension enzyme) from calf serum, J. Biol. Chem. 268: 27118–27126.PubMedGoogle Scholar
  116. Khatri, I. S., Forstner, G. G., and Forstner, J. F., 1993, Suggestive evidence for two different mucin genes in rat intestine, Biochem. J. 294: 391–399.PubMedGoogle Scholar
  117. Kim, Y. S., Yuan, M., Itzkowitz, S. H., Sun, Q., Kaizu, T., Palekar, A., Trump, B. F., and Hakomori, S., 1986, Expression of LeY and extended LeY blood group-related antigens in human malignant, premalignant and nonmalignant colonic tissues, Cancer Res. 46: 5985–5992.PubMedGoogle Scholar
  118. Kobata, A., 1989, Altered glycosylation of surface glycoproteins in tumor cells and its clinical application, Pigment Cell Res. 2: 304–308.PubMedGoogle Scholar
  119. Kornfeld, S., 1982, Oligosaccharide processing during glycoprotein biosynthesis, in: The Glycoconjugates, (M. I. Horowitz, ed.), Academic Press, New York, Vol. III, pp. 3–23.Google Scholar
  120. Kotovuori, P., Tontti, E., Pigott, R., Shepherd, M., Kisco, M., Hasegawa, A., Renkonen, R., Nortamo, P., Altieri, D. C., and Gahmberg, C. G., 1993, The vascular E-selectin binds to the leukocyte integrins CDI1/CD18, Glycobiology 3: 131–136.PubMedGoogle Scholar
  121. Kufe, D., Inghirami, G., Abe, M., Hayes, D., Justi-Wheeler, H., and Schlom, J., 1984, Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors, Hybridoma 3: 223–232.PubMedGoogle Scholar
  122. Kurosaka, A., Nakajima, H., Funakoshi, I., Matsuyama, M., Nagayo, T., and Yamashina, I., 1983, Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein, J. Biol. Chem. 258: 11594–11598.PubMedGoogle Scholar
  123. Kurosaka, A., Kitagawa, H., Fukui, S., Numata, Y., Yamashina, I., Nakada, H., Funakoshi, I., Kawasaki, T., Ogawa, T., and Iijima, H., 1988, A monoclonal antibody that recognizes a cluster of a disaccharide, Neu5Ac2→6GaINAc, in mucin-type glycoproteins, J. Biol. Chem. 262: 8724–8726.Google Scholar
  124. Kurosawa, N., Kojima, N., Inoue, M., Hamamoto, T., and Tsuji, S., 1994, Cloning and expression of Gal31,3 GaINAc specific GalNAca2,6 sialyltransferase, J. Biol. Chem. 269: 19048–19053.PubMedGoogle Scholar
  125. Laferte, S., and Dennis, J. W., 1989, Purification of two glycoproteins expressing 31–6 branched Asn-linked oligosaccharides from metastatic tumor cells, Biochem. J. 259: 569–576.PubMedGoogle Scholar
  126. Lan, M. S., Hollingsworth, M. A., and Metzgar, R. S., 1990, Polypeptide core of a human pancreatic tumor mucin antigen, Cancer Res. 50: 2997–3001.PubMedGoogle Scholar
  127. Larsen, R. D., Rajan, V. P., Ruff, M. M. Kukowsaka-Latallo, J., Cummings, R. D., and Lowe, J. B., 1989, Isolation of a cDNA encoding a murine UDP galactose:beta-D-galactosyl-1,4N-acetyl-D-glucosaminide alpha-1,3-galactosyltransferase: Expression cloning by gene transfer, Proc. Natl. Acad. Sci. USA 86: 8227–8331.Google Scholar
  128. Larsen, R. D., Rivera-Marrero, C. A., Ernst, L. K., Cummings, R. D., and Lowe, J. B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UdpGal:Beta-D-Gal(1,4)-D-G1cNAc alpha(1,3)-galactosyltransferase cDNA, J. Biol. Chem. 265: 7055–7061.PubMedGoogle Scholar
  129. Ligtenberg, M.J.L., Vos, H. L., Gennissen, A.M.C., and Hilkens, J., 1990, Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative termini, J. Biol. Chem. 265: 5573–5578.PubMedGoogle Scholar
  130. Ligtenberg, M.J.L., Buijs, F., Vos, H. L., and Hilkens, J., 1992, Suppression of cellular aggregation by high levels of epsialin, Cancer Res. 52: 2318–2324.PubMedGoogle Scholar
  131. Lin, L.-H., Stern, J. L., and Davidson, E. A., 1982, Clones from cultured, B16 mouse-melanoma cells resistant to wheat germ agglutinin and with altered production of mucin-type glycoproteins, Carbohydr. Res. 111: 257–271.Google Scholar
  132. Lippincott-Schwartz, J., and Fambrough, D. M., 1987, Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: Kinetic and morphological analysis, Cell 49: 669–677.PubMedGoogle Scholar
  133. Lis, H., and Sharon, N., 1993, Protein glycosylation. Structure and functional aspects—Review, Eur. J. Biochem. 218: 1–27.PubMedGoogle Scholar
  134. Maeji, N. J., Inoue, Y., and Chujo, R., 1987, Preliminary communication: The role of the N-acetyl group in determining the conformation of 2-acetamido-2-deoxy-o-galactopyranosyl-threoninecontaining peptides, Carbohydr. Res. 162: 4–8.Google Scholar
  135. Magnani, J. L., Steplewski, Z., Koprowski, H., and Ginsburg, V., 1983, Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as a mucin, Cancer Res. 43: 5489–5492.PubMedGoogle Scholar
  136. Marianne, T., Perini, J. M., Lafitte, J., Houdret, N., Pruvot, F. R., Lamblin, G., Slayter, H. S., and Roussel, P., 1987, Peptides of human bronchial mucus glycoproteins, Biochem. J. 248: 189–195.PubMedGoogle Scholar
  137. Matsushita, Y., Hoff, S. D. Nudelman, E. D., Ohtaka, M., Hakomori, S., Ota, D. M., Cleary, K. R., and Irimura, T., 1991, Metastatic behavior and cell surface properties of HT-29 human colon carcinoma variant cells selected for their differential expression of sialyl-dimeric LeX antigen, Clin. Exp. Metast. 9: 283–299.Google Scholar
  138. Matsuura, H., Greene, T., and Hakomori, S., 1989, An a-N-acetyl galactosaminylation at the threonine residue of a defined peptide sequence creates the oncofetal peptide epitope in human fibronectin, J. Biol. Chem. 264: 10472–10476.PubMedGoogle Scholar
  139. Medof, M. E., Lublin, D. M., Holers, V. M., Ayers, D. J., Getty, R. R., Leykam, J. K., Atkinson, J. P., and Tykocinski, M. L., 1987, Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement, Proc. Natl. Acad. Sei. USA 84: 2007–2011.Google Scholar
  140. Miller, S. C., Hay, E. D., and Codington, J. F., 1977, Ultrastructural and histochemical differences in cell surface properties of strain specific and non-strain specific TA3 adenocarcinoma cells, J. Cell Biol. 72: 511–529.PubMedGoogle Scholar
  141. Mizouchi, T., Yamashita, K., Fukikawa, K., Titani, K., and Kobata, A., 1980, The structures of the carbohydrate moieties of bovine blood coagulation factor X, J. Biol. Chem. 255: 3526–3531.Google Scholar
  142. Murthy, V.L.N., and Horowitz, M. l., 1966, Alkali-reductive cleavage of ovine submaxillary mucin, Carbohydr. Res. 6: 266–275.Google Scholar
  143. Nakada, H., Funakoshi, I., and Yamashina, I., 1975, The isolation and characterization of glycopeptides and mucopolysaccharides from plasma membranes of an ascites hepatoma, AH 130, J. Biochem. 78: 863–872.PubMedGoogle Scholar
  144. Nakada, H., Numata, Y., Inoue, M., Tanaka, N., Kitagawa, H., Funakoshi, I., Fukui, S., and Yamashina, I., 1991, Elucidation of an essential structure recognized by an anti-GalNAca-Ser (Thr) monoclonal antibody (MLS 128), J. Biot Chem. 266: 12402–12405.Google Scholar
  145. Nakada, H., Inoue, M., Numata, Y., Tanaka, N., Funakoshi, I., Fukui, S., Mellors, A., and Yamashina, I., 1993, Epitopic structure of Tn glycophorin A for an anti-Tn antibody (MLS 128), Proc. Natl. Acad. Sci. USA 90: 2495–2499.PubMedGoogle Scholar
  146. Nakamori, S., Ota, D. M., Cleary, K. R., Shirotani, K., and Irimura, T., 1994, MUCI mucin expression as a marker of progression and metastasis of human colorectal carcinoma, Gastroenterology 106: 353–361.PubMedGoogle Scholar
  147. Nieman, H., Boschek, B., Evans, D., Rosig, M., Tamura, T., and Klenk, H., 1982, Post-translational glycosylation of coronavirus glycoprotein El—Inhibition by monensin, EMBO J. 1: 1499–1504.Google Scholar
  148. Okumura, T., Lombart, C., and Jamieson, G. A., 1976, Platelet glycocalicin II: Purification and characterization, J. Biol. Chem. 251: 5950–5955.PubMedGoogle Scholar
  149. Parekh, R. B., Tse, A.G.D., Dwek, R. A., Williams, A. F., and Rademacher, T. W., 1987, Tissue-specific N-glycosylation, site specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1, EMBO J. 6: 1233–1244.PubMedGoogle Scholar
  150. Parry, G., Beck, J. C., Moss, L., Barley, J., and Ojakian, G. K., 1990, Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions, Exp. Cell Res. 188: 302–311.PubMedGoogle Scholar
  151. Passaniti, A., and Hart, G. W., 1988, Cell surface sialylation and tumor metastasis, J. Biol. Chem. 263: 7591–7603.PubMedGoogle Scholar
  152. Peat, N., Gendler, J. J., Lalani, E., Duhig, T., and Taylor-Papadimitriou, J., 1992, Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice, Cancer Res. 52: 1954–1960.PubMedGoogle Scholar
  153. Pierce, M., and Arango, J., 1986, Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetra-antennary glycopeptides containing [G1cNAc-13(1,6)Man-a(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells, J. Biol. Chem. 261: 10772–10777.PubMedGoogle Scholar
  154. Pierce, M., Arango, J., Tahir, S. H., and Hindsgaul, O., 1987, Activity of UDP-GIcNAc: Alphamannoside beta (1,6)N-acetylglucosaminyltransferase (GnT V) in cultured cells using a synthetic trisaccharide acceptor, Biochem. Biophys. Res. Commun. 146: 679–684.PubMedGoogle Scholar
  155. Pigman, W., 1977, Submaxillary and sublingual glycoprotein, in: The Glycoconjugates, (M. I. Horowitz and W. Pigman, eds.), Academic Press, New York, Vol. 1, pp. 129–135.Google Scholar
  156. Piller, F., and Cartron, J.-P., 1983, UDP-G1cNAc:Ga1(31→4G1cNAcßl-~3 N-acetyl glucosaminyltransferase, J. Biol. Chem. 258: 12293–12299.PubMedGoogle Scholar
  157. Piller, V., Piller, F., Klier, F. G., and Fukuda, M., 1989, O-glycosylations of leukosialin in K562 cells, Eur. J. Biochem. 183: 123–135.PubMedGoogle Scholar
  158. Pisano, A., Redmond, J. W., Williams, K. L., and Gooley, A. A., 1993, Glycosylation sites identified by solid phase Edman degradation: O-linked glycosylation motifs on human glycophorin A, Glycobiology 3: 429–435.PubMedGoogle Scholar
  159. Porchet, N., Nguyen, V. C., Dufosse, J., Audie, J. P., Guyonnet-Duperat, V., Gross, M. S., Denis, C., Degand, P., Bernheim, A., and Aubert, J. P., 1991, Molecular cloning and chromosomal localization of a novel human tracheobronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs, Biochem. Biophys. Res. Commun. 175: 414–422.PubMedGoogle Scholar
  160. Probst, J. C., Hauser, F., Joba, W., and Hoffmann, W., 1992, The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat, J. Biol. Chem. 267: 6310–6316.PubMedGoogle Scholar
  161. Rice, G. E., and Bevilacqua, M. P., 1989, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion, Science 246: 1303–1306.PubMedGoogle Scholar
  162. Roth, J., 1984, Cytochemical localization of terminal N-acetylgalactosamine residues in cellular compartments of intestinal goblet cells: Implications of topology of 0-glycosylation, J. Cell Biol. 98: 399–406.PubMedGoogle Scholar
  163. Saito, H., Nishikawa, A., Gu, J., Ihara, Y., Soejima, H., Wada, Y., Sekiya, C., Niikawa, N., and Taniguchi, N., 1994, cDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V, Biochem. Biophys. Res. Commun. 198: 318–327.Google Scholar
  164. Sako, D., Chang, X.-J., Barone, K. M., Vachino, G., White, H. M., Shaw, G., Veldman, G. M., Bean, K. M., Ahren, T. J., Furie, B., Cumming, D. A., and Larsen, G. R., 1993, Expression cloning of a functional glycoprotein ligand for P-selectin, Cell 75: 1179–1186.PubMedGoogle Scholar
  165. Sanford, B. H., 1967, An alteration in tumor histocompatibility induced by neuraminidase, Transplantation 5: 1273–1279.PubMedGoogle Scholar
  166. Santer, U. V., Gilbert, F., and Glick, M. C., 1984, Change in glycosylation of membrane glycoproteins after transfection of NIH 3T3 with human tumor DNA, Cancer Res. 44: 3730–3735.PubMedGoogle Scholar
  167. Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T., and Hasegawa, M., 1993, Expression cloning of a novel Galß(1-+3/1→4)GIcNAc a2,3-sialyltransferase using lectin resistance selection, J. Biol. Chem. 268: 22782–22787.PubMedGoogle Scholar
  168. Sato, T., Furukawa, K., Autero, M., Gahmberg, C. G., and Kobata, A., 1993a, Structural study of the sugar chains of human leukocyte common antigen CD45, Biochemistry 32: 12694–12703.PubMedGoogle Scholar
  169. Sato, T., Furukawa, K., Greenwalt, D. E., and Kobata, A., 1993b, Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GaINAc131–44GIcNAc groups, J. Biol. Chem. 114: 890–900.Google Scholar
  170. Sawada, R., Lowe, J. B., and Fukuda, M., 1993, E-selectin-dependent adhesion efficiency of colonic carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-I expression levels, J. Biol. Chem. 268: 12675–12681.PubMedGoogle Scholar
  171. Sawada, R., Tsuboi, S., and Fukuda, M., 1994, Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials, J. Biol. Chem. 269: 1425–1431.PubMedGoogle Scholar
  172. Sawada, T., Ho, J.J.L., Sagabe, T., Yoon, W.-H., Chung, Y.-S., Sowa, M., and Kim, Y. S., 1993, Biphasic effect of cell surface sialic acids on pancreatic cancer cell adhesiveness, Biochem. Biophys. Res. Commun. 195: 1096–1103.PubMedGoogle Scholar
  173. Schachter, H., 1986, Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides, Biochem. Cell Biol. 64: 163–181.PubMedGoogle Scholar
  174. Schachter, H., and Brockhausen, I., 1992, The biosynthesis of serine (threonine)-N-acetylgalactosamine-linked carbohydrate moieties, in: Glycoconjugates—Composition, Structure and Function, ( H. J. Allen and E. C. Kisailus, eds.), Dekker, New York, pp. 263–404.Google Scholar
  175. Schweizer, A., Clausen, H., Van Meer, G., and Hauri, H.-P., 1994, Localization of 0-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum–Golgi intermediate compartment, J. Biol. Chem. 269: 4035–4041.PubMedGoogle Scholar
  176. Segawa, K., and Yamaguchi, N., 1986, Characterization of the chimeric SV40 large T antigen which has a membrane attachment sequence of polyoma virus middle T antigen, Virology 155: 334–344.PubMedGoogle Scholar
  177. Sgroi, D., Varki, A., Braesch-Andersen, S., and Stamenkovic, I., 1993, CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin, J. Biol. Chem. 268: 7011–7018.PubMedGoogle Scholar
  178. Sheng, Z., Wu, K., Carraway, K. L., and Fregien, N., 1992, Molecular cloning of the trans-membrane component of the 13762 mammary adenocarcinoma sialomucin complex, J. Biol. Chem. 267: 16341–16446.PubMedGoogle Scholar
  179. Sherblom, A. P., and Carraway, K. L., 1980, Sulfate incorporation into the major sialoglycoprotein of the MAT-B1 subline of the 13762 rat ascites mammary adenocarcinoma, Biochemistry 19: 1213–1219.PubMedGoogle Scholar
  180. Sherblom, A. P., Buck, R. L., and Carraway, K. L., 1980a, Purification of the major sialoglycoproteins of 13762 MAT-B1 and MAT-C1 rat ascites mammary adenocarcinoma cells by density gradient centrifugation in cesium chloride and guanidine hydrochloride, J. Biot Chem. 255: 783–790.Google Scholar
  181. Sherblom, A. P., Huggins, J. W., Chesnut, R. W., Buck, R. L., Ownby, C. L., Dermer, G. B., and Carraway, K. L., 1980b, Cell surface properties of ascites sublines of the 13762 rat mammary adenocarcinoma, Exp. Cell Res. 126: 417–426.PubMedGoogle Scholar
  182. Shimizu, M., and Yamauchi, K., 1982, Isolation and characterization of mucin-like glycoprotein in human milk fat globule membrane, J. Biol. Chem. 91: 515–524.Google Scholar
  183. Shimizu, M., Tanimoto, H., Azuma, N., and Yamauchi, K., 1990, Growth inhibition of Balb/C 3T3 cells by a high-molecular-weight mucin-like glycoprotein of human milk fat globule membrane, Biochem. Int. 20: 147–154.PubMedGoogle Scholar
  184. Shimizu, Y., and Shaw, S., 1993, Mucins in the mainstream, Nature 366: 630–631.PubMedGoogle Scholar
  185. Shirotani, K., Taylor-Papadimitriou, J., Gendler, S. J., and Irimura, T., 1994, Transcriptional regulation of MUCI gene in colon carcinoma cells by a soluble factor: Identification of a regulatory element, J. Biol. Chem. 269: 15030–15035.PubMedGoogle Scholar
  186. Shogren, R., Gerken, T. A., and Jentoft, N., 1989, Role of glycosylation on the conformation and chain dimensions of 0-linked glycoproteins: Light-scattering studies of ovine submaxillary mucin, Biochemistry 28: 5525–5536.PubMedGoogle Scholar
  187. Shoreibah, M., Perng, G.-S., Adler, B., Weinstein, J., Basu, R., Cupples, R., Wen, D., Browne, J. K., Buckhaults, P., Fregien, N., and Pierce, M., 1993, Isolation, characterization, and expression of a cDNA encoding N-acetyl glucosaminyltransferase V, J. Biol. Chem. 268: 15381–15385.PubMedGoogle Scholar
  188. Smith, P. L., and Baenziger, J. U., 1992, Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase, Proc. Natl. Acad. Sci. USA 89: 329–333.PubMedGoogle Scholar
  189. Spicer, A. P., Parry, G., Patton, S., and Gendler, S. J., 1991, Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential 0-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism, J. Biol. Chem. 266: 15099–15109.PubMedGoogle Scholar
  190. Spielman, J., Hull, S. R., Sheng, Z., Kanterman, R., Bright, A., and Carraway, K. L., 1988, Biosynthesis of a tumor cell surface sialomucin, J. Biol. Chem. 263: 9621–9629.PubMedGoogle Scholar
  191. Springer, G. F., 1984, T and Tn, general carcinoma autoantigens, Science 224: 1198–1206.PubMedGoogle Scholar
  192. Spooncer, E., Fukuda, M., Klock, J. C., Oates, J. E., and Dell, A., 1984, Isolation and characterization of polyfucosylated lactosaminoglycan from human granulocytes, J. Biol. Chem. 259: 4792–4801.PubMedGoogle Scholar
  193. Stanbridge, E. J., Der, C. J., Doerson, C., Nishimi, R. Y., Wilkinson, J. E., Peehl, D. M., and Weissman, B. E., 1982, Human cell hybrids: Analysis of transformation and tumorigenicity, Science 215: 252–259.PubMedGoogle Scholar
  194. Steck, P. A., and Nicolson, G. L., 1983, Cell surface glycoproteins of 13762Nf mammary adenocarcinoma clones of differing metastatic potentials, Exp. Cell Res. 147: 255–267.PubMedGoogle Scholar
  195. Strous, G. J., and Dekker, J., 1992, Mucin-type glycoproteins, Crit. Rev. Biochem. Mol. Biol. 27: 57–92.PubMedGoogle Scholar
  196. Strous, G.J.A., 1979, Initial glycosylation of proteins with acetylgalactosaminyl serine linkages, Proc. Natl. Acad. Sci. USA. 76: 2694–2698.PubMedGoogle Scholar
  197. Swallow, D. M., Griffiths, B., Bramwell, M., Wiseman, G., and Burchell, J., 1986, Detection of the urinary `pum’ polymorphism by the tumor-binding monoclonal antibodies Cal, Cat, Ca3, HMFG1, and HMFG2, Dis. Markers 4: 247–254.PubMedGoogle Scholar
  198. Swallow, D. M., Gendler, S., Griffiths, B., Kearney, A., Povey, S., Sheer, D., Palmer, R. W., and Taylor-Papadimitriou, J., and Bramwell, M., 1987a, The hypervariable gene locus PUM, which codes for the tumor associated epithelial mucins, is located on chromosome 1, within the region 1821–24, Ann. Hum. Genet. 51: 289–294.PubMedGoogle Scholar
  199. Swallow, D. M., Gendler, S., Griffiths, B., Corney, G., Taylor-Papadimitriou, J., and Bramwell, M. E., 1987b, The human tumor-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM, Nature 328: 82–84.Google Scholar
  200. Symond, D. L., and Vickery, A. L., 1976, Mucinous carcinoma of the colon and rectum, Cancer 37: 1891–1900.Google Scholar
  201. Takeuchi, M., Takasaki, S., Miyazaki, H., Kato, T., Hoshi, S., Kochibe, N., and Kobata, A., 1988, Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells, J. Biol. Chem. 263: 3657–3663.PubMedGoogle Scholar
  202. Tao, T.-W., and Johnson, L. K., 1982, Altered adhesiveness of tumor cell surface variants with reduced metastasizing capacity. Reduced adhesiveness to vascular wall components in culture, Int. J. Cancer 30: 763–766.PubMedGoogle Scholar
  203. Thomas, M. L., 1989, The leukocyte common antigen family, Annu. Rev. Immunol. 7: 339–369.PubMedGoogle Scholar
  204. Timpte, C. S., Eckhardt, A. E., Abernethy, J. L., and Hill, R. L., 1988, Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues, J. Biol. Chem. 263: 1081–1088.PubMedGoogle Scholar
  205. Tomita, M., and Marchesi, V. T., 1975, Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin, Proc. Natl. Acad. Sci. USA 72: 2964–2968.PubMedGoogle Scholar
  206. Tomiya, N., Awaya, J., Kurono, M., Hanzawa, H., Shimada, I., Arata, Y., Yoshida, T., and Takahashi, N., 1993, Structural elucidation of a variety of GaINAc-containing N-linked oligosaccharides from human urinary kallidinogenase, J. Biol. Chem. 268: 113–126.PubMedGoogle Scholar
  207. Toribara, N. W., Gum, J. R., Culhane, P. J., Lagace, R. E., Hicks, J. W., Petersen, G. M., and Kim, Y. S., 1991, MUC-2 human small intestinal mucin gene structure, J. Clin. Invest. 88: 1005–1013.PubMedGoogle Scholar
  208. Toribara, N. W., Roberton, A. M., Ho, S. B., Kuo, W.-L., Gum, E., Hicks, J. W., Gum, J. R., Jr., Byrd, J. C., Siddiki, B., and Kim, Y. S., 1993, Human gastric mucin, J. Biol. Chem. 268: 5879–5885.PubMedGoogle Scholar
  209. Tsuda, T., Gallup, M., Jany, B., Gum, J., Kim, Y. S., and Basbaum, C., 1993, Characterization of a rat airway cDNA encoding a mucin-like protein, Biochem. Biophys. Res. Commun. 195: 363–373.PubMedGoogle Scholar
  210. van den Eijnden, D. H., Evans, N. A., Codington, J. F., Reinhold, V., Silber, C., and Jeanloz, R. W., 1979, Chemical structure of epiglycanin, the major glycoprotein of the TA3-Ha ascites cell, J. Biol. Chem. 254: 12153–12159.PubMedGoogle Scholar
  211. van den Eijnden, D. H., Koenderman, A.H.L., and Schiphorst, W.E.C.M., 1988, Biosynthesis of blood group i-active polylactosaminoglycans, J. Biol. Chem. 263: 12461–12471.PubMedGoogle Scholar
  212. van de Wiel-van Kemenade, E., Ligtenberg, M.J.L., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C.J.M., Hilkens, J., and Figdor, C. G., 1993, Episialin (MUCI) inhibits cytotoxic lymphocyte—target cell interaction, J. Immunol. 151: 767–776.Google Scholar
  213. Van Nieuw Amerongen, A., Oderkerk, C. H., Roukema, P. A., Wolf, J. H., Lisman, J.J.W., and Vliegnthart, J.F.G., 1987, Primary structure of O- and N-glycosidic carbohydrate chains derived from murine submandibular mucin. Carbohydr. Res. 164: 43–51.PubMedGoogle Scholar
  214. Varki, A., 1993, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3: 97–130.PubMedGoogle Scholar
  215. Verma, M., and Davidson, E. A., 1993, Molecular cloning sequencing of a canine tracheobronchial mucin cDNA containing a cysteine-rich domain, Proc. Natl. Acad. Sci. USA 90: 7144–7148.PubMedGoogle Scholar
  216. Wang, Y., Agarwal, N., Eckhardt, A. E., Stevens, R. D., and Hill, R. L., 1993, The acceptor substrate specificity of porcine submaxillary UDP-GaINAc:polypeptide N-acetylgalactosaminyltransferase is dependent on the amino acid sequences adjacent to serine and threonine residues, J. Biol. Chem. 268: 22979–22983.PubMedGoogle Scholar
  217. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1979, Characterization of a blood group I-active ganglioside, J. Biol. Chem. 254: 3221–3228.PubMedGoogle Scholar
  218. Watkins, S. C., Slayter, H. S., and Codington, J. F., 1991, Intracellular pathway of a mucin-type membrane glycoprotein in mouse mammary tumor cells, Carbohydr. Res. 213: 185–200.PubMedGoogle Scholar
  219. Weinstein, J., de Souza-e-Silva, U., and Paulson, J. C., 1982, Sialylation of glycoprotein oligosaccharides N-linked to asparagine, J. Biol. Chem. 257: 13845–13853.PubMedGoogle Scholar
  220. Weinstein, J., Lee, E. U., McEntee, K., Lai, P.-H., and Paulson, J. C., 1987, Primary structure of (3-galactoside 2,6-sialyltransferase, J. Biol. Chem. 262: 17735–17743.PubMedGoogle Scholar
  221. Wen, D. X., Livingston, B. D., Medzihradszky, K. F., Kelm, S., Burlingame, A. L., and Paulson, J. C., 1992, Primary structure of Ga1131,2(4)GlcNAc a2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning, J. Biol. Chem. 267: 21011–21019.PubMedGoogle Scholar
  222. Wieruszeski, J. M., Michalski, J. C., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H., Van Halbeek, H., Mutsaers, J.H.G.M., and Vliegenthart, J.F.G., 1987, Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese switlet, J. Biol. Chem. 262: 6650–6658.PubMedGoogle Scholar
  223. Williams, C. J., Wreschner, D. H., Tanaka, A., Tsarfaty, I., Keydar, I., and Dion, A. S., 1990, Multiple protein forms of the human breast tumor-associated epithelial membrane antigen (EMA) are generated by alternative splicing and induced by hormonal stimulation, Biochem. Biophys. Res. Commun. 170: 1331–1338.PubMedGoogle Scholar
  224. Wilson, I.B.H., Gravel, Y., and Heijne, G. V., 1991, Amino acid distributions around 0-linked glycosylation sites, Biochemistry 275: 529–534.Google Scholar
  225. Woodward, H. D., Ringler, N. J., Selvakumar, R., Simet, I. M., Bhavanandan, V. P., and Davidson, E. A., 1987, Deglycosylation studies on tracheal mucin glycoproteins, Biochemistry 26: 5315–5322.PubMedGoogle Scholar
  226. Xu, G., Huan, L., Khatri, J. A., Wang, D., Bennick, A., Fahim, R.E.F., Forstner, G. G., and Forstner, J., 1992, cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide, J. Biol. Chem. 267: 5401–5407.Google Scholar
  227. Yagel, S., Feinmesser, R., Waghorne, C., Lala, P. K., Breitman, M. L., and Dennis, J. W., 1989, Evidence that GlcNAcß1→6 branched Asn-linked oligosaccharides on metastatic tumor cells facilitate invasion of basement membranes, Int. J. Cancer 44: 685–690.PubMedGoogle Scholar
  228. Yamamoto, F., Clausen, H., White, T., Marken, J., and Hakomori, S., 1990, Molecular genetic basis of the histo-blood group ABO system, Nature 345: 229–233.PubMedGoogle Scholar
  229. Yamamura, K., Takasaki, S., Ichihashi, M., Mishima, Y., and Kobata, A., 1991, Increase of sialylated tetraantennary sugar chains in parallel to the higher lung-colonizing abilities of mouse melanoma clones, J. Invest. Dermatol. 97: 735: 741.Google Scholar
  230. Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukada, Y., and Kobata, A., 1983, Comparative study of the sugar chains of h-glutamyl transpeptidases purified from rat liver and rat AH-66 hepatoma cells, Cancer Res. 43: 5059–5063.PubMedGoogle Scholar
  231. Yamashita, K., Ohkura, T., Tachibana, Y., Takasaki, S., and Kobata, A., 1984, Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis, J. Biol. Chem. 259: 10834–10840.PubMedGoogle Scholar
  232. Yamashita, K., Tachibana, Y., Ohkura, T., and Kobata, A., 1985, Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation, J. Biol. Chem. 260: 3963–3969.PubMedGoogle Scholar
  233. Yazawa, S., Abbas, S. A., Madiyalakan, R., Barlow, J. J., and Matta, K. L., 1986, N-acetylglucosaminyltransferases related to the synthesis of mucin-type glycoproteins in human ovarian tissue, Carbohydr. Res. 149: 241–242.PubMedGoogle Scholar
  234. Yogeeswaran, G., and Tao, T., 1980, Cell surface sialic acid expression of lectin-resistant variant clones of B16 melanoma with altered metastasizing potential, Biochem. Biophys. Res. Commun. 95: 1452–1460.PubMedGoogle Scholar
  235. Yonezawa, S., Byrd, J. C., Dahiya, R., Ho, J.J.L., Gum, J. R., Griffiths, B., Swallow, D. M., and Kim, Y. S., 1991, Differential mucin gene expression in human pancreatic and colon cancer cells, Biochem. J. 276: 599–605.PubMedGoogle Scholar
  236. Yousefi, S., Higgins, E., Daoling, Z., Pollex-Kruger, A., Hindsgaul, O., and Dennis, J. W., 1991, Increased UDP-GIcNAc:Galßl-3Ga1NAc-R(GlcNAc to GaINAc) ß-1,6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines, J. Biol. Chem. 266: 1772–1782.PubMedGoogle Scholar
  237. Zaretsky, J. Z., Weiss, M., Tsarfaty, I., Hareuveni, M., Wreschner, D. H., and Keydar, I., 1990, Expression of genes coding for Ps2, C-Erbb2, estrogen receptor and the H23 breast tumor-associated antigen. A comparative analysis in breast cancer, FEBS Lett. 265: 46–50.PubMedGoogle Scholar
  238. Zotter, S., Hageman, P. C., Lossnitzer, A., Mooi, W. J., and Hilgers, J., 1988, Tissue and tumor distribution of human polymorphic epithelial mucin, Cancer Rev. 11–12:55–101.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Veer P. Bhavanandan
    • 1
  • Kiyoshi Furukawa
    • 2
  1. 1.Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical CenterPennsylvania State UniversityHersheyUSA
  2. 2.Department of Biochemistry, Institute of Medical ScienceUniversity of TokyoTokyo 108Japan

Personalised recommendations