Sialobiology and the Polysialic Acid Glycotope Occurrence, Structure, Function, Synthesis, and Glycopathology

  • Frederic A. TroyII

Abstract

Polysialic acids (polySia)* are a structurally diverse family of linear carbohydrate chains that consist of N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) residues, usually joined internally by α2,8-, α2,9-, or alternating α2,8-/α2,9-ketosidic linkages. 3-Deoxy-D-glycero-D-galacto-2- nonulosonic acid (KDN) is a unique deaminated form of Sia, and polyKDN chains share many properties in common with polySia (Table I). The finding of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac,Neu5Gc), poly(KDN) chains and their partially O-acetylated and O-lactylated forms in salmonid fish egg glycoproteins demonstrates the natural occurrence of multiple forms of these unique sugar chains.

Keywords

Sialic Acid Neural Cell Adhesion Molecule Polysialic Acid Cortical Vesicle Jelly Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, A., and Rutishauser, U., 1988, Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons, J. Cell Biol. 106: 479–486.PubMedCrossRefGoogle Scholar
  2. Acheson, A., Sunshine, J. L., and Rutishauser, U., 1991, NCAM polysialic acid can regulate both cell—cell and cell—substrate interactions, J. Cell Biol. 114: 143–153.PubMedCrossRefGoogle Scholar
  3. Adlam, C., Knight, J. M., Mugridge, A., Williams, J. M., and Lindon, J. C., 1987, Production of colominic acid by Pasteurella haemolytica serotype A2 organisms, FEMS Microbiol. Lett. 42: 23–25.CrossRefGoogle Scholar
  4. Albright, C. F., Orlean, P., and Robbins, P. W., 1989, A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition, Proc. Natl. Acad. Sci. USA 86: 7366–7369.PubMedCrossRefGoogle Scholar
  5. Alcaraz, G., and Goridis, C., 1991, Biosynthesis and processing of polysialylated NCAM by AtT-20 cells, Eur. J. Cell Biol. 55: 165–173.PubMedGoogle Scholar
  6. Aletsee-Ufrecht, M. C., Langley, K., Gratzl, O., and Gratzl, M., 1990, Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors, FEBS Lett. 272: 4549.CrossRefGoogle Scholar
  7. Angata, T., Kitajume, S., Terada, T., Kitajima, K., Inoue, S., Troy, F. A., and Inoue, Y., 1994, Identification, characterization and developmental expression of a novel a2,8-KDN-transferase which terminate elongation of a2,8-linked oligo-polysialic acid chain synthesis in trout egg polysialoglycoproteins, Glycoconj. J. 11: 493–499.PubMedCrossRefGoogle Scholar
  8. Barry, G. T., and Goebel, W. F., 1957, Colominic acid, a substrate of bacterial origin related to sialic acid, Nature 179: 206.PubMedCrossRefGoogle Scholar
  9. Becker, C. G., Becker, T., and Roth, G., 1993a, Distribution of NCAM-180 and polysialic acid in the developing tectum mesencephali of the frog Discoglossus pictus and the salamander Pleurodeles waltl, Cell Tissue Res. 272: 289–301.PubMedCrossRefGoogle Scholar
  10. Becker, T., Becker, C. G., Niemann, U., Naujoks, M. C., Gerardy, S. R., and Roth, G., 1993b, Amphibian-specific regulation of polysialic acid and the neural cell adhesion molecule in development and regeneration of the retinotectal system of the salamander Pleurodeles waltl, J. Comp. Neurol. 336: 532–544.PubMedCrossRefGoogle Scholar
  11. Bhattacherjee, A. K., Jennings, H. J., Kenny, C. P., Martin, A., and Smith, I.C.P., 1976, Structural determination of the polysaccharide antigens of Neisseria meningitidis serogroups Y, W-135, and BO, Can. J. Biochem. 54; 1–8.Google Scholar
  12. Bitter-Suermann, D., and Roth, J., 1987, Monoclonal antibodies to polysialic acid reveal epitope sharing between invasive pathogenic bacteria, differentiating cells and tumor cells, Immunol. Res. 6: 225–237.PubMedCrossRefGoogle Scholar
  13. Blass, K. S., Reinhardt, M. S., Kindler, R. A., Cleeves, V., and Rajewsky, M. F., 1994, In vitro differentiation of E-N-CAM expressing rat neural precursor cells isolated by FACS during prenatal development, J. Neurosci. Res. 37: 359–373.CrossRefGoogle Scholar
  14. Bock, E., Yavin, Z., Jorgensen, O. S., and Yavin, E., 1980, Nervous system-specific proteins in developing rat cerebral cells in culture, J. Neurochem. 35: 1297–1306.PubMedCrossRefGoogle Scholar
  15. Bonfanti, L., Olive, S., Poulain, D. A., and Theodosis, D. T., 1992, Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: An immunohistochemical study, Neuroscience 49: 419–436.PubMedCrossRefGoogle Scholar
  16. Bortolussi, R., Ferrieri, P., Bjorksten, B., and Quie, P. G., 1979, Capsular KI polysaccharide of Escherichia coli: Relationship to virulence in newborn rats and resistance to phagocytosis, Infect. Immun. 25: 293–298.PubMedGoogle Scholar
  17. Boulnois, G. J., Roberts, I. S., Hodge, R., Hardy, K. R., Jann, K. B., and Timmis, K. N., 1987, Analysis of the K1 capsule biosynthesis genes of Escherichia coli: Definition of three functional regions for capsule production, Mol. Gen. Genet. 208: 242–246.PubMedCrossRefGoogle Scholar
  18. Brisson, J. R., Baumann, H., Imberty, A., Perez, S., and Jennings, H. J., 1992, Helical epitope of the group B meningococcal a(2–8)-linked sialic acid polysaccharide, Biochemistry 31: 49965004.Google Scholar
  19. Cho, J.-W., and Troy, F. A., 1994a, Polysialic acid expression on neuroinvasive Escherichia coli K1 and human cancers: Use of the E. coli K1 polysialyltransferase to synthesize polysialylated glycosphingolipid, in: Complex Carbohydrates in Drug Research, Alfred Benzon Symposium 36 ( K. Bock and H. Clausen, eds.), Munksgaard, Copenhagen, pp. 260–275.Google Scholar
  20. Cho, J.-W., and Troy, F. A., 19946, Polysialic acid engineering: Synthesis of polysialylated neoglycosphingolipid by using the polysialyltransferase from neuroinvasive Escherichia coli K1, Proc. Natl. Acad. Sci. USA 91: 11427–11431.Google Scholar
  21. Crossin, K. L., Edelman, G. M., and Cunningham, B. A., 1984, Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule, J. Cell Biol. 99: 1848–1855.PubMedCrossRefGoogle Scholar
  22. Cunningham, B. A., Hoffman, S., Rutishauser, U., Hemperly, J. J., and Edelman, G. M., 1983, Molecular topography of the neural cell adhesion molecule N-CAM: Surface orientation and location of sialic acid-rich and binding regions, Proc. Natl. Acad. Sci. USA 80: 3116–3120.PubMedCrossRefGoogle Scholar
  23. Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R., and Edelman, G. M., 1987, Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science 236: 799–806.PubMedCrossRefGoogle Scholar
  24. Doherty, P., Cohen, J., and Walsh, F. S., 1990, Neunte outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid, Neuron 5: 209–219.PubMedCrossRefGoogle Scholar
  25. Doherty, P., Skaper, S. D., Moore, S. E., Leon, A., and Walsh, F. S., 1992, A developmentally regulated switch in neuronal responsiveness to NCAM and N-cadherin in the rat hippocampus, Development 115: 885–892.PubMedGoogle Scholar
  26. Edelman, G. M., 1985, Cell adhesion molecule expression and the regulation of morphogenesis, Cold Spring Harbor Symp. Quant. Biol. 50: 877–889.PubMedCrossRefGoogle Scholar
  27. Egan, W., Liu, T.-Y., Dorow, D., Cohen, J. S., Robbins, J. D., Gotschlich, E. C., and Robbins, J. B., 1977, Structural studies on the sialic acid polysaccharide antigen of Escherichia coli strain Bos-12, Biochemistry 16: 3687–3692.PubMedCrossRefGoogle Scholar
  28. Ellis, L., Wallis, I., Abreau, E., and Pfenninger, K. H., 1985, Nerve growth cones isolated from fetal rat brain. IV. preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons, J. Cell Biol. 101: 1977–1989.PubMedCrossRefGoogle Scholar
  29. Figarella-Branger, D. F., Durbec, P. L., and Rougon, G. N., 1990, Differential spectrum of expression of neural cell adhesion molecule isoforms and Ll adhesion molecules on human neuroectodermal tumors, Cancer Res. 50: 6364–6370.PubMedGoogle Scholar
  30. Finne, J., 1982, Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain, J. Biol. Chem. 257: 11966–11970.PubMedGoogle Scholar
  31. Finne, J., and Makela, P. H., 1985, Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase. Involvement of a long oligosaccharide segment in molecular interactions of polysialic acid, J. Biol. Chem. 260: 1265–1270.PubMedGoogle Scholar
  32. Finne, J., Leinonen, M., and Makela, P. H., 1983, Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis, Lancet 2: 355–357.PubMedCrossRefGoogle Scholar
  33. Finne, J., Bitter-Suermann, D., Goridis, C., and Finne, U., 1987, An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues, J. Immunol. 138: 4402–4407.PubMedGoogle Scholar
  34. Flesher, A. R., Jennings, H. J., Lugowski, C., and Kasper, D. L., 1982, Isolation of a serogroup 1-specific antigen from legionella pneumophila, J. Infect. Dis. 145: 224–233.PubMedCrossRefGoogle Scholar
  35. Foltz, K. R., and Lennarz, W. J., 1993, The molecular basis of sea urchin gamete interactions at the egg plasma membrane, Dev. Biol. 158: 46–61.PubMedCrossRefGoogle Scholar
  36. Fredette, B., Rutishauser, U., and Landmesser, L., 1993, Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development, J. Cell Biol. 123: 1867–1888.PubMedCrossRefGoogle Scholar
  37. Freischutz, B., Saito, M., Rahmann, H., and Yu, R. K., 1994, Activities of five different sialyltransferases in fish and rat brains, J. Neurochem. 62: 1965–1973.PubMedCrossRefGoogle Scholar
  38. Frosch, M., Gärgen, I., Boulnois, G. J.. Timmis, K. N., and Bitter-Suermann, D., 1985, NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: Isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K I and group B meningococci, Proc. Natl. Acad. Sci. USA 82: 1194–1198.Google Scholar
  39. Frosch, M., Edwards, U., Bousset, K., Kraube, B., and Weisgerber, C., 1991, Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides, Mol. Microbiol. 5: 1251–1263.PubMedCrossRefGoogle Scholar
  40. Fukuda, M. N., Dell, A., Oates, J. E., and Fukuda, M., 1985, Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl a2–9sialyl) terminals from PAI human embryonal carcinoma cells, J. Biol. Chem. 260: 6623–6631.PubMedGoogle Scholar
  41. Gandour-Edwards, R., Deckard-Janatpour, K., Ye, J., Donald, P. J., and Troy, F. A., 1995, Neural cell adhesion molecule(N-CAM) in head and neck malignancies, Modern Pathology 8: 101A.Google Scholar
  42. Glick, M. C., Livingston, B. D., Shaw, G. W. Jacobs, J. L., and Troy, F. A., 1991, Expression of polysialic acid on human neuroblastoma, In: Evans, A. E., Knudson, A. G., Seeger, R. C., and D’Angio, G. J. (eds.), Advances in Neuroblastoma Research, Vol. 3, Wiley-Liss, New York, pp. 267–274.Google Scholar
  43. Gold, D. P., van Dongen, J. J., Morton, C. C., Bruns, G. A., van den Eisen, P., Geurts van Kessel, A. H., and Terhorst, C., 1987, The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice, Proc. Natl. Acad. Sci. USA 84: 1664–1668.PubMedCrossRefGoogle Scholar
  44. Greis, C., and Rosner, H., 1990, Migration and aggregation of embryonic chicken neurons in vitro: Possible functional implication of polysialogangliosides, Brain Res. Dev. Brain Res. 57: 223234.Google Scholar
  45. Grogan, T., Guptil, J., Mullen, J., Ye, J., Hanneman, E., Vela, L., Frutiger, Y., Miller, T., and Troy, F., 1994, Polysialylated NCAM as a neurodeterminant in malignant lymphoma (ML), Lab. Invest. 70:110A (Abstr. 637 ).Google Scholar
  46. Hakomori, S., 1990, Bifunctional role of glycosphinogolipids. Modulators for transmembrane signaling and mediators for cellular interactions, J. Biol. Chem. 265: 18713–18716.PubMedGoogle Scholar
  47. Halberstadt, J. B., Flowers, H., and Glick, M. C., 1993, A method to detect polysialic acid in polymers of 10 or more sialyl residues synthesized in vivo and in vitro, Anal. Biochem. 209: 136–142.PubMedCrossRefGoogle Scholar
  48. Hallenbeck, P. C., Vimr, E. R., Yu, F., Bassler, B., and Troy, F. A., 1987a, Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-a-2,8sialosyl carbohydrate units, J. Biol. Chem. 262: 3553–3561.PubMedGoogle Scholar
  49. Hallenbeck, P. C., Yu, F., and Troy, F. A., 1987b, Rapid separation of oligomers of polysialic acid by high-performance liquid chromatography, Anal. Biochem. 161: 181–186.PubMedCrossRefGoogle Scholar
  50. Heitz, P. U., Komminoth, P., Lackie, P. M., Zuber, C., and Roth, J., 1990, Demonstration of polysialic acid and N-CAM in neuroendocrine tumors, Verh. Dtsch. Ges. Pathol. 74: 376–377.PubMedGoogle Scholar
  51. Hemperly, J. J., Murray, B. A., Edelman, G. M., and Cunningham, B. A., 1986, Sequence of a cDNA clone encoding the polysialic acid-rich and cytoplasmic domains of the neural cell adhesion molecule N-CAM, Proc. Natl. Acad. Sci. USA 83: 3037–3041.PubMedCrossRefGoogle Scholar
  52. Higa, H. H., and Varki, A., 1988, Acetyl-coenzyme A:polysialic acid 0-acetyltransferase from K1-positive Escherichia coli. The enzyme responsible for the 0-acetyl plus phenotype and for 0-acetyl form variation, J. Biol. Chem. 263: 8872–8878.PubMedGoogle Scholar
  53. Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA 80: 5762–5766.PubMedCrossRefGoogle Scholar
  54. Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem. 257: 7720–7729.PubMedGoogle Scholar
  55. Horowitz, M. A., and Silverstein, S. C., 1980, Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and complement killing by human phagocytes, J. Clin. Invest. 65: 82–94.CrossRefGoogle Scholar
  56. Inoue, S., and Inoue, Y., 1986, Fertilization (activation)-induced 200- to 9-kDa depolymerization of polysialoglycoprotein, a distinct component of cortical alveoli of rainbow trout eggs, J. Biol. Chem. 261: 5256–5261.PubMedGoogle Scholar
  57. Inoue, S., and Iwasaki, M., 1978, Isolation of a novel glycoprotein from the eggs of rainbow trout: Occurrence of disialosyl groups on all carbohydrate chains, Biochem. Biophys. Res. Commun. 83: 1018–1023.PubMedCrossRefGoogle Scholar
  58. Inoue, S., and Iwasaki, M., 1980, Characterization of a new type of glycoprotein saccharides containing polysialosyl sequence, Biochem. Biophys. Res. Commun. 93: 162–165.PubMedCrossRefGoogle Scholar
  59. Inoue, S., Kitajima, K., Inoue, Y., and Kudo, S., 1987, Localization of polysialoglycoprotein as a major glycoprotein component in cortical alveoli of the unfertilized eggs of Salmo gairdneri, Dev. Biol. 123: 442–454.PubMedCrossRefGoogle Scholar
  60. Inoue, S., Kanamori, A., Kitajima, K., and Inoue, Y., 1988, KDN-glycoprotein: A novel deaminated neuraminic acid-rich glycoprotein isolated from vitelline envelope of rainbow trout eggs, Biochem. Biophys. Res. Commun. 153: 172–176.PubMedCrossRefGoogle Scholar
  61. Inoue, S., Iwasaki, M., Kanamori, A., Jerada, T., Kitajima, K., and Inoue, Y., 1991, Structure and function of poly(KDN)-GP and poly(Sia)-GP: Two distinct types of glycoproteins isolated from the vitelline envelope and ovarian fluid of salmonid fish, Glycoconj. J. 8: 233.Google Scholar
  62. Inoue, Y., 1993, Glycobiology of fish egg polysialoglycoproteins (PSGP) and deaminated neuraminic acid-rich glycoproteins (KDN-gp), in: Polysialic Acid: From Microbes to Man ( J. Roth, U. Rutishauser, and F. A. Troy, eds.), Birkhauser Verlag, Basel, pp. 171–181.Google Scholar
  63. Iwasaki, M., and Inoue, S., 1985, Structures of the carbohydrate units of polysialoglycoproteins isolated from the eggs of four species of salmonid fishes, Glycoconj. J. 2: 209–228.CrossRefGoogle Scholar
  64. Iwasaki, M., Nomoto, H., Kitajima, K., Inoue, S., and Inoue, Y., 1984, Isolation and structures of the third major type of carbohydrate units in polysialoglycoproteins from rainbow trout eggs, Biochem. Int. 8: 573–579.PubMedGoogle Scholar
  65. Iwasaki, M., Inoue, S., and Inoue, Y., 1987, Identification and determination of absolute and anomeric configurations of the 6-deoxyaltrose residue found in polysialoglycoprotein of Salvelinus leucomaenis pluvius eggs. The first demonstration of the presence of a 6-deoxyhexose other than fucose in glycoprotein, Eur. J. Biochem. 168: 185–192.PubMedCrossRefGoogle Scholar
  66. Iwasaki, M., Inoue, S., and Troy, F. A., 1990, A new sialic acid analogue, 9–0-acetyl-deaminated neuraminic acid, and a-2,8-linked 0-acetylated poly(N-glycolylneuraminyl) chains in a novel polysialoglycoprotein from salmon eggs, J. Biol. Chem. 265: 2596–2602.PubMedGoogle Scholar
  67. James, W. M., and Agnew, W. S., 1987, Multiple oligosaccharide chains in the voltage-sensitive Na+ channel from Electrophorus electricus: Evidence for a-2,8-linked polysialic acid, Biochem. Biophys. Res. Commun. 148: 817–826.PubMedCrossRefGoogle Scholar
  68. James, W. M., and Agnew, W. S., 1989, a-(2,8)-polysialic acid immunoreactivity in voltage- sensitive sodium channel of eel electric organ, Proc. R. Soc. London Ser. B 237: 233–245.Google Scholar
  69. Janas, T., and Troy, F. A., 1989, The Escherichia coli Kl poly-a-2,8-sialosyl sialytransferase is topologically oriented toward the cytoplasmic face of the inner membrane, in: Proc. Xth International Symposium on Glycoconjugates, Vol. 142, ( N. Sharon, H. Lis, D. Duksin, and I. Kahane, eds.), Organizing Committee Press, Jerusalem, pp. 207–208.Google Scholar
  70. Jin, L., Hemperly, J. J., and Lloyd, R. V., 1991, Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues, Am. J. Pathol. 138: 961–969.PubMedGoogle Scholar
  71. Joliot, A. H., Triller, A., Volovitch, M., Pernelle, C., and Prochiantz, A., 1991, a-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide, New Biol. 3: 1121 1134.Google Scholar
  72. Joliot, A., Triller, A., Volovitch, M., and Prochiantz, A., 1992, Are embryonic forms of NCAM homeobox receptors? C. R. Acad. Sci. Iii, 59–63.Google Scholar
  73. Joliot, A., Le Roux, I., Volovitch, M., Bloch, G. E., and Prochiantz, A., 1993a, Neurotrophic activity of homeopeptide, C. R. Seances Soc. Biol. Fil. 187: 24–27.Google Scholar
  74. Joliot, A., Le Roux, I., Volovitch, M., Bloch, G. E., and Prochiantz, A., 1993b, Neurotrophic activity of an homeobox peptide, Ann. Genet. 36: 70–72.PubMedGoogle Scholar
  75. Joliot, A., Le Roux, I., Volovitch, M., Bloch, G. E., and Prochiantz, A., 1994, Neurotrophic activity of a homeobox peptide, Prog. Neurobiol. 42: 309–311.PubMedCrossRefGoogle Scholar
  76. Kaback, H. R., 1971, Bacterial membranes, Methods Enzymol. 22: 99–120.CrossRefGoogle Scholar
  77. Kanamori, A., Kitajima, K., Inoue, S., and Inoue, Y., 1989, Isolation and characterization of deaminated neuraminic acid-rich glycoprotein (KDN-gp-OF) in the ovarian fluid of rainbow trout (Salmo gairdneri), Biochem. Biophys. Res. Commun. 164: 744–749.PubMedCrossRefGoogle Scholar
  78. Kanamori, A., Inoue, S., Iwasaki, M., Kitajima, K., Kawai, G., Yokoyama, S., and Inoue, Y., 1990, Deaminated neuraminic acid-rich glycoprotein of rainbow trout egg vitelline envelope. Occurrence of a novel a-2,8-linked oligo(deaminated neuraminic acid) structure in 0-linked glycan chains, J. Biol. Chem. 265: 21811–21819.PubMedGoogle Scholar
  79. Kanamori, A., Kitajima, K., Inoue, Y., and Inoue, S., 1991, Immunochemical probes for KDN and oligo/poly(KDN) structures in glycoconjugates, Glycoconj. J. 8: 222–223.Google Scholar
  80. Kanamori, A., Inoue, S., Xu lei, Z., Zuber, C., Roth, J., Kitajima, K., Ye, J., Troy, F. A., and Inoue, Y., 1994, Monoclonal antibody specific for a2,8-linked oligo deaminated neuraminic acid (KDN) sequences in glycoproteins. Preparation and characterization of a monoclonal antibody and its application in immunohistochemistry, Histochemistry 101: 333–340.PubMedCrossRefGoogle Scholar
  81. Karlsson, K. A., 1989, Animal glycosphingolipids as membrane attachment sites for bacteria, Annu. Rev. Biochem. 58: 309–350.PubMedCrossRefGoogle Scholar
  82. Kean, E. L., 1970, Nuclear cytidine 5’-monophosphosialic acid synthetase, J. Biol. Chem. 245: 2301–2308.PubMedGoogle Scholar
  83. Kean, E. L., and Roseman, S., 1966, The sialic acids: X. Purification and properties of cytidine 5’-monophosphosialic acid synthetase, J. Biol. Chem. 241: 5643–5650.PubMedGoogle Scholar
  84. Keller, S. H., and Vacquier, V. D., 1994, The isolation of acrosome-reaction-inducing glycoproteins from sea urchin egg jelly, Dev. Biol. 162: 304–312.PubMedCrossRefGoogle Scholar
  85. Kern, W. F., Spier, C. M., Miller, T. P., and Grogan, T. M., 1993, NCAM (CD56)-positive malignant lymphoma, Leuk. Lymphoma 12: 1–10.PubMedCrossRefGoogle Scholar
  86. Kim, J. J., Zhou, D., Mandrell, R. E., and Griffiss, J. M., 1992, Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis, Infect. Immun. 60: 4439–4442.PubMedGoogle Scholar
  87. Kimer, S. J., Bentley, J., Ciemerych, M., Moeller, C. J., and Bock, E., 1994, Expression of N-CAM in fertilized pre-and periimplantation and parthenogenetically activated mouse embryos, Eur. J. Cell Biol. 63: 102–113.Google Scholar
  88. Kiss, J. Z., Wang, C., and Rougon, G., 1993, Nerve-dependent expression of high polysialic acid neural cell adhesion molecule in neurohypophysial astrocytes of adult rats, Neuroscience 53: 213–221.PubMedCrossRefGoogle Scholar
  89. Kitajima, K., and Inoue, S., 1988, A proteinase associated with cortices of rainbow trout eggs and involved in fertilization-induced depolymerization of polysialoglycoproteins, Dev. Biol. 129: 270–274.PubMedCrossRefGoogle Scholar
  90. Kitajima, K., Inoue, Y., and Inoue, S., 1986, Polysialoglycoproteins of Salmonidae fish eggs. Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri), J. Biol. Chem. 261: 5262–5269.PubMedGoogle Scholar
  91. Kitajima, K., Inoue, S., Inoue, Y., and Troy, F. A., 1988, Use of a bacteriophage-derived endoN-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies, J. Biol. Chem. 263: 18269–18276.PubMedGoogle Scholar
  92. Kitajima, K., Kuroyanagi, H., Inoue, S., Ye, J., Troy, F. A., and Inoue, Y., 1994, Discovery of a new type of sialidase, “KDNase,” which specifically hydrolyzes deaminoneuraminyl (3deoxy-D-glycero-D-galacto-2-nonulosonic acid) but not N-acylneuraminyl linkages, J. Biol. Chem. 269: 21415–21419.PubMedGoogle Scholar
  93. Kitazume, S., Kudo, M., Kitajima, K., Inoue, S., Ye, J., Cho, J.-W., Troy, F. A., and Inoue, Y., 1993, Structural elucidation of the a-2,8-polysialylglycan chains in neural cell adhesion molecules (N-CAM) in embryonic chick brains and characterization of the a2,8-polysialyltransferase responsible for a-2,8-polysialylation, Glycoconj. J. 10: 332.Google Scholar
  94. Kitazume, S., Kitajima, K., Inoue, S., Inoue, Y., and Troy, F. A., 1994a, Developmental expression of trout egg polysialoglycoproteins and the prerequisite a2,6-, and a2,8-sialyl and a2,8polysialyltransferase activities required for their synthesis during oogenesis, J. Biol. Chem. 269: 10330–10340.PubMedGoogle Scholar
  95. Kitazume, S., Kitajima, K., Inoue, S., Troy, F. A., Cho, J.-W. Lennarz, W. J., and Inoue, Y., 1994b, Identification of polysialic acid-containing glycoprotein in the jelly coat of sea urchin eggs. Occurrence of a novel type of polysialic acid structure, J. Biol. Chem. 269: 22712–22718.Google Scholar
  96. Knirel, Y. A., Kocharova, N. A., Shashkov, A. S., Kochetkov, N. K., Mamontova, V. A., and Soloveva, T. F., 1989, Structure of the capsular polysaccharide of Klebsiella ozaenae serotype K4 containing 3-deoxy-D-glycero-D-galacto-nonulosonic acid, Carbohydr. Res. 188: 145–155.PubMedCrossRefGoogle Scholar
  97. Knirel, Y. A., Rietschel, E. T., Marre, R., and Zahringer, U., 1994, The structure of the 0-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide, Eur. J. Biochem. 221: 239245.Google Scholar
  98. Komminoth, P., Roth, J., Lackie, P. M., Bitter-Suermann, D., and Heitz, P. U., 1991, Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids, Am. J. Pathol. 139: 297–304.PubMedGoogle Scholar
  99. Komminoth, P., Roth, J., Saremaslani, P., Matias, G. X., Wolfe, H. J., and Heitz, P. U., 1994, Polysialic acid of the neural cell adhesion molecule in the human thyroid: A marker for medullary thyroid carcinoma and primary C-cell hyperplasia. An immunohistochemical study on 79 thyroid lesions, Am. J. Surg. Pathol. 18: 399–411.PubMedCrossRefGoogle Scholar
  100. Kundig, F. D., Aminoff, D., and Roseman, S., 1971, The sialic acids. XII. Synthesis of colominic acid by a sialyltransferase from Escherichia coli K-235, J. Biol. Chem. 246: 2543–2550.PubMedGoogle Scholar
  101. Kwiatkowski, B., Boscheck, B., Thiele, H., and Stirm, S., 1982, Endo-N-acetylneuraminidase associated with bacteriophage particles, J. Virol. 43: 697–704.PubMedGoogle Scholar
  102. Lackie, P. M., Zuber, C., and Roth, J., 1990, Polysialic acid and N-CAM localisation in embryonic rat kidney: Mesenchymal and epithelial elements show different patterns of expression, Development 110: 933–947.PubMedGoogle Scholar
  103. Lackie, P. M., Zuber, C., and Roth, J., 1991, Expression of polysialylated N-CAM during rat heart development, Differentiation 47: 85–98.PubMedCrossRefGoogle Scholar
  104. Ladisch, S., 1987, Tumor cell gangliosides, Adv. Pediatr. 34: 45–58.Google Scholar
  105. Landmesser, L., Dahm, L., Tang, J. C., and Rutishauser, U., 1990, Polysialic acid as a regulator of intramuscular nerve branching during embryonic development, Neuron. 4: 655–667.PubMedCrossRefGoogle Scholar
  106. Lee, Y. S., and Chuong, C. M., 1992, Adhesion molecules in skeletogenesis: I. Transient expression of neural cell adhesion molecules (NCAM) in osteoblasts during endochondral and intramembranous ossification, J. Bone Miner. Res. 7: 1435–1446.PubMedCrossRefGoogle Scholar
  107. Lehmann, J. M., Riethmuller, G., and Johnson, J. P., 1989, MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily, Proc. Natl. Acad. Sci. USA 86: 9891–9895.PubMedCrossRefGoogle Scholar
  108. Lipinski, M., Hirsch, M. R., Deagostini-Bazin, H., Yamada, O., Tursz, T., and Goridis, C., 1987, Characterization of neural cell adhesion molecules (NCAM) expressed by Ewing and neuroblastoma cell lines, Int. J. Cancer 40: 81–86.PubMedCrossRefGoogle Scholar
  109. Livingston, B. D., Jacobs, J., Shaw, G. W., Glick, M. C., and Troy, F. A., 1987, Polysialic acid in human neuroblastoma cells, Fed. Proc. 46: 2151.Google Scholar
  110. Livingston, B. D., Jacobs, J. L., Glick, M. C., and Troy, F. A., 1988, Extended polysialic acid chains (n greater than 55) in glycoproteins from human neuroblastoma cells, J. Biol. Chem. 263: 9443–9448.PubMedGoogle Scholar
  111. McCoy, R. D., Vimr, E. R., and Troy, F. A., 1985, CMP-NeuNAc:poly-a-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules, J. Biol. Chem. 260: 12695–12699.PubMedGoogle Scholar
  112. McGuire, E. J., and Binkley, S. B., 1964, The structure and chemistry of colominic acid, Biochemistry 3: 247–251.PubMedCrossRefGoogle Scholar
  113. Margolis, R. K., and Margolis, R. U., 1983, Distribution and characteristics of polysialosyl o1i-gosaccharides in nervous tissue glycoproteins, Biochem. Biophys. Res. Commun. 116: 889–894.PubMedCrossRefGoogle Scholar
  114. Marsh, R. G., and Gallin, W. J., 1992, Structural variants of the neural cell adhesion molecule (N-CAM) in developing feathers, Dev. Biol. 150: 171–184.PubMedCrossRefGoogle Scholar
  115. Masson, L., and Holbein, B. E., 1983, Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis, J. Bacteriol. 154: 728–736.PubMedGoogle Scholar
  116. Merker, R. l., and Troy, F. A., 1990, Biosynthesis of the polysialic acid capsule in Escherichia coli KI. Cold inactivation of sialic acid synthase regulates capsule expression below 20°C, Glycobiology 1: 93–100.PubMedCrossRefGoogle Scholar
  117. Michalides, R., Kwa, B., Springall, D., van Zandwijk, N., Koopman, J., Hilkens, J., and Mooi, W., 1994, NCAM and lung cancer, Int. J. Cancer Suppl. 8: 34–37.PubMedCrossRefGoogle Scholar
  118. Moolenaar, C. E., Muller, E. J., Schol, D. J., Figdor, C. G., Bock, E., Bitter-Suermann, D., and Michalides, R. J., 1990, Expression of neural cell adhesion molecule-related sialoglycoprotein in small cell lung cancer and neuroblastoma cell lines H69 and CHP-212, Cancer Res. 50: 1102 1106.Google Scholar
  119. Nadano, D., Iwasaki, M., Endo, S., Kitajima, K., Inoue, S., and Inoue, Y., 1986, A naturally occurring deaminated neuraminic acid, 3-deoxy-n-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs, J. Biol. Chem. 261: 11550–11557.PubMedGoogle Scholar
  120. Nadasdy, T., Roth, J., Johnson, D. L., Bane, B. L., Weinberg, A., Verani, R., and Silva, F. G., 1993, Congenital mesoblastic nephroma: An immunohistochemical and lectin study, Hum. Pathol. 24: 413–419.PubMedCrossRefGoogle Scholar
  121. Nilsson, 0., 1992, Carbohydrate antigens in human lung carcinomas, Apmis Suppl. 27: 149–161.Google Scholar
  122. Nishiyama, I., Seki, T., Oota, T., Ohta, M., and Ogiso, M., 1993, Expression of highly polysialy- hated neural cell adhesion molecule in calcitonin-producing cells, Neuroscience 56: 777–786.PubMedCrossRefGoogle Scholar
  123. Nomoto, H., Iwasaki, M., Endo, T., Inoue, S., Inoue, Y., and Matsumura, G., 1982, Structures of carbohydrate units isolated from trout egg polysialoglycoproteins: Short-cored units with oligosialosyl groups, Arch. Biochem. Biophys. 218: 335–341.PubMedCrossRefGoogle Scholar
  124. Orskov, I., Sharma, V., and Orskov, F., 1976, Genetic mapping of the KI and K4 antigens of K(L) antigens and K antigens of 08:K27(A), 08:K8(L) and 09:K57(B), Acta Pathol. Microbiol. Scand. Sect. B 84: 125–131.Google Scholar
  125. Owen, P., and Kaback, H. R., 1978, Molecular structure of membrane vesicles from Escherichia coli, Proc. Natl. Acad. Sci. USA 75: 3148–3152.PubMedCrossRefGoogle Scholar
  126. Pavelka, M. J., Hayes, S. F., and Silver, R. P., 1994, Characterization of KpsT, the ATP-binding component of the ABC-transporter involved with the export of capsular polysialic acid in Escherichia coli K1, J. Biol. Chem. 269: 20149–20158.PubMedGoogle Scholar
  127. Pelkonen, S., Pelkonen, J., and Finne, J., 1989, Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins, J. Virol. 63: 4409–4416.PubMedGoogle Scholar
  128. Phillips, M. L., Nudelman, E., Gaeta, F. C., Perez, M., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1990, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex, Science 250: 1130–1132.PubMedCrossRefGoogle Scholar
  129. Regan, C. M., 1991, Regulation of neural cell adhesion molecule sialylation state, Int. J. Biochem. 23: 513–523.PubMedCrossRefGoogle Scholar
  130. Robbins, J. B., McCracken, G.H.J., Gotschlich, E. C., Orskov, F., Orskov, I., and Hanson, L. A., 1974, Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis, N. Engl. J. Med. 290: 1216–1220.Google Scholar
  131. Robbins, J. B., Schneerson, R., Egan, W. B., Vann, W. F., and Liu, D. T., 1980, Virulence properties of bacterial capsular polysaccharides: Unanswered questions, in: The Molecular Basis of Microbial Pathogenicity: Report of the Dahlem Workshop on the Molecular Basis of the Infective Process, Berlin, 1979, October 22–26 ( H. Smith, J. J. Skehel, and J. J. Turner, eds.), Verlag Chemie, Weinheim, pp. 115–132.Google Scholar
  132. Roberts, I. S., Mountford, R., Hodge, R., Jann, K. B., and Boulnois, G. J., 1988, Common organization of gene clusters for production of different capsular polysaccharides (K antigens) in Escherichia coli, J. Bacteriol. 170: 1305–1310.PubMedGoogle Scholar
  133. Rohr, T. E., and Troy, F. A., 1980, Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli, J. Biol. Chem. 255: 2332–2342.PubMedGoogle Scholar
  134. Rosenberg, J., Ellis, L., Troy, F., and Kayalar, C., 1986, The 5B4 antigen expressed on sprouting neurons contains a-2,8-linked polysialic acid, Brain Res. 395: 262–267.PubMedCrossRefGoogle Scholar
  135. Rösner, H., 1993, Developmental expression of gangliosides in vivo and in vitro, in: Polysialic Acid: From Microbes to Man ( J. Roth, U. Rutishauser, and F. A. Troy, eds.), Birkhauser Verlag, Basel, pp. 279–297.Google Scholar
  136. Roth, J., Taatjes, D. J., Bitter-Suernmann, D., and Finne, J., 1987, Polysialic acid units are spatially and temporally expressed in developing postnatal rat kidney, Proc. Natl. Acad. Sci. USA 84: 1969–1973.PubMedCrossRefGoogle Scholar
  137. Roth, J., Blaha, I., Bitter-Suermann, D., and Heitz, P. U., 1988a, Blastemal cells of nephroblastomatosis complex share an onco-developmental antigen with embryonic kidney and Wilms’ tumor. An immunohistochemical study on polysialic acid distribution, Am. J. Pathol. 133: 596–608.PubMedGoogle Scholar
  138. Roth, J., Brada, D., Blaha, I., Ghielmini, C., Bitter-Suermann, D., Komminoth, P., and Heitz, P. U., 1988b, Evaluation of polysialic acid in the diagnosis of Wilms’ tumor. A comparative study on urinary tract tumors and non-neuroendocrine tumors, Virchows Arch B 56: 95–102.PubMedCrossRefGoogle Scholar
  139. Roth, J., Zuber, C., Wagner, P., Taatjes, D. J., Weisgerber, C., Heitz, P. U., Goridis, C., and BitterSuermann, D., 1988c, Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor, Proc. Natl. Acad. Sci. USA 85: 2999–3003.PubMedCrossRefGoogle Scholar
  140. Roth, J., Kempf, A., Reuter, G., Schauer, R., and Gehring, W. J., 1992, Occurrence of sialic acids in Drosophila melanogaster, Science 256: 673–675.PubMedCrossRefGoogle Scholar
  141. Rothbard, J. B., Brackenbury, R., Cunningham, B. A., and Edelman, G. M., 1982, Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem. 257: 11064–11069.PubMedGoogle Scholar
  142. Rougon, G., 1993, Structure, metabolism and cell biology of polysialic acids, Eur. J. Cell Biol. 61: 197–207.PubMedGoogle Scholar
  143. Rutishauser, U., 1989, Polysialic acid as a regulator of cell interactions, in: Neurobiology of Glycoconjugates (R. U. Margolis and R. K. Margolis, Eds.), Plenum Press, New York, pp. 367382.Google Scholar
  144. Rutishauser, U., and Goridis, C., 1986, NCAM: The molecule and its genetics, Trends Genet. 2: 72–76.CrossRefGoogle Scholar
  145. Rutishauser, U., Watanabe, M., Silver, J., Troy, F. A., and Vimr, E. R., 1985, Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase, J. Cell Biol. 101: 1842–1849.PubMedCrossRefGoogle Scholar
  146. Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M., and Sunshine, J., 1988, The neural cell adhesion molecule (NCAM) as a regulator of cell–cell interactions, Science 240: 53–57.PubMedCrossRefGoogle Scholar
  147. Sarff, L. D., McCracken, G. H., Schiffer, M. S., Glode, M. P., Robbins, J. B., Orskov, I., and orskov, F., 1975, Epidemiology of Escherichia coli KI in healthy and diseased newborns, Lancet 1: 1099–1104.PubMedCrossRefGoogle Scholar
  148. Sato, C., Kitajima, K., Tazawa, I., Inoue, Y., Inoue, S., and Troy, F. A., 1993, Structural diversity in the a2–8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms, J. Biol. Chem. 268: 23675–23684.PubMedGoogle Scholar
  149. Schcidegger, E. P., Lackie, P. M., Papay, J., and Roth, J., 1994, In vitro and in vivo growth of clonal sublines of human small cell lung carcinoma is modulated by polysialic acid of the neural cell adhesion molecule, Lab. Invest. 70: 95–106.Google Scholar
  150. Scott, A. A., Kopecky, K. J., Grogan, T. M., Head, D. R., Troy, F.A.I., Mullen, J., Ye, J., Appelbaum, F. R., Theil, K. S., and Willman, C. L., 1994, CD56: A determinant of extra-medullary and central nervous system (CNS) involvement in acute myeloid leukemia (AML), Lab. Invest. 70:120A (Abstr. 695 ).Google Scholar
  151. SeGall, G. K., and Lennarz, W. J., 1979, chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction, Dev. Biol. 71: 3348.Google Scholar
  152. Seki, T., and Arai, Y., 1991a, Expression of highly polysialylated NCAM in the neocortex and piriform cortex of the developing and the adult rat, Anat. Embryo!. 184: 395–401.CrossRefGoogle Scholar
  153. Seki, T., and Arai, Y., 1991b, The persistent expression of a highly polysialylated NCAM in the dentate gyms of the adult rat, Neurosci. Res. 12: 503–513.PubMedCrossRefGoogle Scholar
  154. Seki, T., and Arai, Y., l993a, Highly polysialylated neural cell adhesion molecule (NCAM-H) is by newly generated granule cells in the dentate gyms of the adult rat, J. Neurosci. 13: 2351–2358.Google Scholar
  155. Seki, T., and Arai, Y., 1993b, Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central system, Neurosci. Res. 17: 265–290.PubMedCrossRefGoogle Scholar
  156. Shults, C. W., and Kimber, T. A., 1992, Mesencephalic dopaminergic cells exhibit increased density of neural cell adhesion molecule and polysialic acid during development, Brain Res. Dev. Brain Res. 65: 161–172.PubMedCrossRefGoogle Scholar
  157. Silver, R. P., and Vimr, E. R., 1990, Polysialic acid capsule of Escherichia coli KI, in: The Bacteria: A Treatise on Structure and Function, Vol. XI (B. H. Iglewski and V. L. Clark, Eds.), Academic Press, New York, pp. 39–60.Google Scholar
  158. Silver, R. P., Finn, C. W., Vann, W. F., Aaronson, W., Schneerson, R., Kretchmer, P. J. and Garon, C. F., 1981, Molecular cloning of the K1 capsular polysaccharide genes of E. coli, Nature 289: 696–698.CrossRefGoogle Scholar
  159. Song, Y., Kitajima, K., and Inoue, Y., 1990, New tandem-repeating peptide structures in poly-sialoglycoproteins from the unfertilized eggs of kokanee salmon, Arch. Biochem. Biophys. 283: 167–172.PubMedCrossRefGoogle Scholar
  160. Song, Y., Kitajima, K., Muto, H., and Inoue, Y., 1991, Deaminated neuraminic acid (KDN)containing glycosphingolipids, KDN-gangliosides: Their structure and function, Glycoconj. J. 8: 161.Google Scholar
  161. Song, Y., Kitajima, K., and Inoue, Y., 1993, Monoclonal antibody specific to a-2—s3-linked deaminated neuraminyl ß-galactosyl sequence, Glycobiology 3: 31–36.PubMedCrossRefGoogle Scholar
  162. Steenbergen, S. M., and Vimr, E. R., 1991, Overexpression, membrane localization, and sequencing of the polysialyltransferase from Escherichia coli K1, Glycoconj. J. 8: 145.Google Scholar
  163. Stromberg, N., Ryd, M., Lindberg, A. A., and Karlsson, K. A., 1988, Studies on the binding of bacteria to glycolipids. Two species of Propionibacterium apparently recognize separate epitopes on lactose of lactosylceramide, FEBS Lett. 232: 193–198.PubMedCrossRefGoogle Scholar
  164. Sunshine, J., Balak, K., Rutishauser, U., and Jacobson, M., 1987, Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development, Proc. Natl. Acad. Sci. USA 84: 5896–5990.CrossRefGoogle Scholar
  165. Terada, T., Kitazume, S., Kitajima, K., Inoue, S., Ito, F., Troy, F. A., and Inoue, Y., 1993, Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase, J. Biol. Chem. 268: 2640–2648.PubMedGoogle Scholar
  166. Tome, Y., Hirohashi, S., Noguchi, M., Matsuno, Y., and Shimosato, Y., 1993, Comparison of immunoreactivity between two different monoclonal antibodies recognizing peptide and polysialic acid chain epitopes on the neural cell adhesion molecule in normal tissues and lung tumors, Acta Pathol. Jpn. 43: 168–175.PubMedGoogle Scholar
  167. Troy, F. A., 1979, The chemistry and biosynthesis of selected bacterial capsular polymers, Annu. Rev. Microbiol. 33: 519–560.PubMedCrossRefGoogle Scholar
  168. Troy, F. A., 1990, Polysialylation of neural cell adhesion molecules, Trends Glycosci. Glycotechnol. 2: 430–449.CrossRefGoogle Scholar
  169. Troy, F. A., 1992, Polysialylation: From bacteria to brains, Glycobiology 2: 5–23.PubMedCrossRefGoogle Scholar
  170. Troy, F. A., and McCloskey, M. A., 1979, Role of a membranous sialyltransferase complex in the synthesis of surface polymers containing sialic acid in Escherichia coli: Temperature-induced alteration in the assembly process, J. Biol. Chem. 254: 7377–7378.PubMedGoogle Scholar
  171. Troy, F. A., Vijay, I. K., and Tesche, N., 1975, Role of undecaprenyl phosphate in synthesis of polymers containing sialic acid in Escherichia coli, J. Biol. Chem. 250: 156–163.PubMedGoogle Scholar
  172. Troy, F. A., Hallenbeck, P. C., McCoy, R. D., and Vimr, E. R., 1987, Detection of polysialosylcontaining glycoproteins in brain using prokaryotic-derived probes, Methods Enzymol. 138: 169–185.PubMedCrossRefGoogle Scholar
  173. Troy, F. A., Janas, T., Janas, T., and Merker, R. I., 1990a, Transmembrane translocation of poly-sialic acid chains across the inner membrane of neuroinvasive E. coli K I, Glycoconj. J. 8: 152.Google Scholar
  174. Troy, F. A., Janas, T., and Merker, R. I., 19906, Topology of the polysialyltransferase complex in the inner membrane of E. coli K1, FASEB J. 4: 31–89.Google Scholar
  175. Troy, F. A., Janas, T., and Merker, R. I., 1990c, Topology of the poly-a-2,8-sialyltransferase in E. coli K1 and energetics of polysialic acid chain translocation across the inner membrane, Glycoconj. J. 7: 383.Google Scholar
  176. Troy, F. A., Janas, T., Janas, T., and Merker, R. I., 1991, Vectorial translocation of polysialic acid chains across the inner membrane of neuroinvasive E. coli K1, FASEB J. 5: A1548.Google Scholar
  177. Troy, F. A., Cho, J.-W., and Ye, J., 1993, Polysialic acid capsule synthesis and chain translocation in neuroinvasive E. coli: “Activated” intermediates and a possible functional role for undecaprenol, in: Polysialic Acid: From Microbes to Man ( J. Roth, U. Rutishauser, and F. A. Troy, eds.), Birkhauser Verlag, Basel, pp. 93–111.Google Scholar
  178. van Dijk, W., Ferwerda, W., and van den Eijnden, D. H., 1973, Subcellular and regional distribution of CMP-N-acetylneuraminic acid synthetase in the calf kidney, Biochim. Biophys. Ada 315: 162–175.CrossRefGoogle Scholar
  179. van Echten, G., and Sandhoff, K., 1993, Ganglioside metabolism. Enzymology, topology, and regulation, J. Biol. Chem. 268: 5341–5344.PubMedGoogle Scholar
  180. Vann, W. F., Silver, R. P., Abeijon, C., Chang, K., Aaronson, W., Sutton, A., Finn, C. W., Lindner, W., and Kotsatos, M., 1987, Purification, properties, and genetic location of Escherichia coli cytidine 5’-monophosphate N-acetylneuraminic acid synthetase, J. Biol. Chem. 262: 17556–17562.PubMedGoogle Scholar
  181. Varki, A., and Higa, H., 1993, Studies of the 0-acetylation and (in)stability of polysialic acid, in: Polvsialic Acid: From Microbes to Man ( J. Roth, U. Rutishauser, and F. A. Troy, eds.), Birkhauser Verlag, Basel, pp. 165–170.Google Scholar
  182. Vijay, I. K., and Troy, F. A., 1975, Properties of membrane-associated sialyltransferase of Escherichia coli, J. Biol. Chem. 250: 164–170.PubMedGoogle Scholar
  183. Vimr, E. R., 1991, Map position and genomic organization of the kps cluster for polysialic acid synthesis in Escherichia coli K1, J. Bacterial. 173: 1335–1338.Google Scholar
  184. Vimr, E. R., 1992, Selective synthesis and labeling of the polysialic acid capsule in Escherichia coli Kl strains with mutations in nanA and neuB, J. Bacterial. 174: 6191–6197.Google Scholar
  185. Vimr, E. R., and Troy, F. A., 1985a, Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli, J. Bacterial. 164: 845–853.Google Scholar
  186. Vimr, E. R., and Troy, F. A., 19856, Regulation of sialic acid metabolism in Escherichia coli: Role of N-acylneuraminate pyruvate-lyase, J. Bacterial. 164: 854–860.Google Scholar
  187. Vimr, E. R., McCoy, R. D., Voliger, H. F., Wilkison, N. C., and Troy, F. A., 1984, Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes, Proc. Natl. Acad. Sci. USA 81: 1971–1975.PubMedCrossRefGoogle Scholar
  188. Wallis, I., Ellis, L., Suh, K., and Pfenninger, K. H., 1985, Immunolocalization of a neuronal growth-dependent membrane glycoprotein, J. Cell Biol. 101: 1990–1998.PubMedCrossRefGoogle Scholar
  189. Walz, G., Aruffo, A., Kolanus, W., Bevilacqua, M., and Seed, B., 1990, Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells, Science 250: 1132–1135.PubMedCrossRefGoogle Scholar
  190. Warren, L., and Blacklow, R. S., 1962, The biosynthesis of cytidine 5’-monophosphoN-acetylneuraminic acid by an enzyme from Neisseria meningitides, J. Biol. Chem. 237: 3527–3534.PubMedGoogle Scholar
  191. Watanabe, M., Kobayashi, H., Yao, R., and Maisel, H., 1992, Adhesion and junction molecules in embryonic and adult lens cell differentiation, Acta Ophthalmol. Suppl. 1992: 46–52.Google Scholar
  192. Weisgerber, C., and Troy, F. A., 1990, Biosynthesis of the polysialic acid capsule in Escherichia call K1. The endogenous acceptor of polysialic acid is a membrane protein of 20 kDa, J. Biol. Chem. 265: 1578–1587.PubMedGoogle Scholar
  193. Weisgerber, C., Hansen, A., and Frosch, M., 1991, Complete nucleotide and deduced protein sequence of CMP-NeuAc:poly-a-2,8 sialosyl sialyltransferase of Escherichia coli KI, Glycobialogv 1: 357–365.CrossRefGoogle Scholar
  194. Whitfield, C., and Troy, F. A., 1984, Biosynthesis and assembly of the polysialic acid capsule in Escherichia call K 1: Activation of sialyl polymer synthesis in inactive sialyltransferase complexes requires protein synthesis, J. Biol. Chem. 259: 12776–12780.PubMedGoogle Scholar
  195. Whitfield, C., Adams, D. A., and Troy, F. A., 1984a, Biosynthesis and assembly of the polysialic acid capsule in Escherichia coil KI: Role of a low-density vesicle fraction in activation of the endogenous synthesis of sialyl polymers, J. Biol. Chem. 259: 12769–12775.PubMedGoogle Scholar
  196. Whitfield, C., Vimr, E. R., Costerton, J. W., and Troy, F. A., 1984b, Protein synthesis is required for in vivo activation of polysialic acid capsule synthesis in Escherichia coli K I, J. Bacterial. 159: 321–328.Google Scholar
  197. Yang, P., Yin, X., and Rutishauser, U., 1992, Intercellular space is affected by the polysialic acid content of NCAM, J. Cell Biol. 116: 1487–1496.PubMedCrossRefGoogle Scholar
  198. Ye, J., Kitajima, K., Inoue, Y., Inoue, S., and Troy, F. A., 1994, Identification of polysialic acids in glycoconjugates, Methods Enzymol. 230: 460–484.PubMedCrossRefGoogle Scholar
  199. Zuber, C., Lackie, P. M., Catterall, W. A., and Roth, J., 1992, Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain, J. Biol. Chem. 267: 9965–9971.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Frederic A. TroyII
    • 1
  1. 1.Department of Biological ChemistryUniversity of California, School of MedicineDavisUSA

Personalised recommendations