Blood-Brain Barrier Permeability Changes during Semliki Forest Virus-Induced Encephalomyelitis in the Balb/c Mouse

A Role for Histamine?
  • R. D. Egleton
  • A. M. Butt
  • S. Amor
  • M. B. Segal
Chapter
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

We have measured blood-brain barrier permeability changes during Semliki Forest Virus infections in the Balb/c mouse, and shown that the permeability changes have a biphasic response peaking at post inoculation days 5 and 14. The histamine H2 receptor antagonist, cimetidine reduced the permeability changes at post inoculation day 5.

Keywords

Spinal Cord Multiple Sclerosis Multiple Sclerosis Patient Permeability Change Post Inoculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Nous avons mesuré les modifications de la perméabilité de la barrière hématoencéphalique au cours de l’infection de souris Balb/c par le virus semliki Forest. Nous avons montré que la perméabilité de la BHE est modifiée en deux phases avec des maximums 5 et 14 jours après l’inoculation du virus. L’admistration de cimétidine, antagoniste du récepteur histaminergique H2, réduit l’augmentation de la perméabilité apparaissant 5 jours après l’inoculation du virus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, I.V., Brankin, B., 1993. J. Neuropathol. Exp. Neurobiol. 52 (2), 95–105.CrossRefGoogle Scholar
  2. 2.
    Thompson, E.J., Kaufmann, P., Shortman, R.C., et al., 1979. B.M.J. 1, 16–17.CrossRefGoogle Scholar
  3. 3.
    Topley and Wilson’s Principles of Bacteriology, Virology and Immunology Eigth edition volume 4, 574–580. Arnold, London, 1990.Google Scholar
  4. 4.
    Fazakerly, J.F., Pathak, S., Scallan, M., et al., 1993. Virology. 195, 627–637CrossRefGoogle Scholar
  5. 5.
    Miller, D.H., Rudge, P., Johnson, G., et al., 1988. Brain. 111, 927–939.PubMedCrossRefGoogle Scholar
  6. 6.
    Egleton, R.D., Segal, M.B., 1994. J. Physiol. 475, 71 P.Google Scholar
  7. 7.
    Kruger, P.G., Nyland, H.I., 1995. Med. Hypotheses. 44 (1), 66–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Boertje, S.B., Ward, S., Robinson, A., 1992. Res. Comm. Chem. Path. Pharm. 76 (2), 143–154.Google Scholar
  9. 9.
    Butt, A.M., Jones, H.C., 1992. Brain Res. 569, 100–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Dietsch, G.N., Hinrichs, D.J., 1989. J. lmmunol. 142 (5), 1476–1481.Google Scholar
  11. 11.
    Preston, J.E., Al-Sarraf, H., Segal, M.B., 1995. Dev. Brain Res. 87, 69–76.CrossRefGoogle Scholar
  12. 12.
    Balluz, I.M., Glasgow, G.M., Killen, H.M., et al., 1993. Neuropathol. Applied Neurobiol. 19, 233–239.CrossRefGoogle Scholar
  13. 13.
    Parsons, L.M., Webb, H.E., 1992. Neuropathol. Applied Neurobiol. 18, 351–359.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. D. Egleton
    • 1
  • A. M. Butt
    • 1
  • S. Amor
    • 2
  • M. B. Segal
    • 1
  1. 1.Physiology Department, U.M.D.SSt Thomas’ HospitalLondonUK
  2. 2.Immunology Department U.M.D.SSt Thomas’ HospitalLondonUK

Personalised recommendations